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PySDL2 is a wrapper around the SDL2 library and as such similar to the discontinued PySDL project. In contrast to
PySDL, it has no licensing restrictions, nor does it rely on C code, but uses ctypes instead.

Contents 1
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2 Contents



CHAPTER 1

Contents

1.1 Installing PySDL2

This section provides an overview and guidance for installing PySDL2 on various target platforms.

1.1.1 Getting the sources

You can download the official releases of PySDL2 from https://github.com/marcusva/py-sdl2/releases. Download the
most recent release, unpack it and make sure that you installed the relevant prerequisites before continuing with the
installation.

1.1.2 Prerequisites

PySDL2 relies on some 3rd party packages to be fully usable and to provide you full access to all of its features.

You must have at least one of the following Python versions installed:

• Python 2.7, 3.5+ (http://www.python.org)

• PyPy 1.8.0+ (http://www.pypy.org)

Other Python versions or Python implementations might work, but are (currently) not officially tested or supported by
the PySDL2 distribution.

You need to have a working SDL2 library on your target system. You can obtain the source code (to build it yourself) or
a prebuilt version at http://www.libsdl.org. Alternatively, on macOS and Windows, you can install the SDL2 binaries
for PySDL2 using pip via the pysdl2-dll package.

PySDL2 also offers support for the following SDL-related libraries:

• SDL2_image (http://www.libsdl.org/projects/SDL_image/)

• SDL2_mixer (http://www.libsdl.org/projects/SDL_mixer/)

• SDL2_ttf (http://www.libsdl.org/projects/SDL_ttf/)
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• SDL2_gfx (http://www.ferzkopp.net/Software/SDL_gfx-2.0/)

Those are optional though and only necessary if you want to use sdl2.sdlimage, sdl2.sdlmixer, sdl2.
sdlttf or sdl2.sdlgfx.

1.1.3 Installation

You can either use the python way of installing the package or the make command using the Makefile on POSIX-
compatible platforms, such as Linux or BSD, or the make.bat batch file on Windows platforms.

Simply type

python setup.py install

for the traditional python way or

make install

for using the Makefile or make.bat. Both will try to perform a default installation with as many features as possible.

Trying out

You also can test out PySDL2 without actually installing it. You just need to set up your PYTHONPATH to point to the
location of the source distribution package. On Windows-based platforms, you might use something like

set PYTHONPATH=C:\path\to\pysdl2\:%PYTHONPATH%

to define the PYTHONPATH on a command shell. On Linux/Unix, use

export PYTHONPATH=/path/to/pysdl2:$PYTHONPATH

for bourne shell compatibles or

setenv PYTHONPATH /path/to/pysdl2:$PYTHONPATH

for C shell compatibles. You can omit the :$PYTHONPATH, if you did not use it so far and if your environment
settings do not define it.

Note: If you did not install SDL2 using the preferred way for your operation system, please read the information
about Bundling SDL2 with pysdl2-dll in the section Integrating PySDL2.

1.2 Integrating PySDL2

PySDL2 consists of two packages, sdl2, which is a plain 1:1 API wrapper around the SDL2 API, and sdl2.ext,
which offers enhanced functionality for sdl2.

The sdl2 package is implemented in a way that shall make it easy for you to integrate and deploy it with your own
software projects. You can rely on PySDL2 as third-party package, so that the user needs to install it before he can use
your software. Alternatively, you can just copy the whole package into your project to ship it within your own project
bundle.
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1.2.1 Bundling SDL2 with pysdl2-dll

The sdl2 package relies on an external SDL2 library for creating the wrapper functions. This means that the user
needs to have SDL2 installed or that you ship a SDL2 library with your project.

For macOS and Windows, the easiest and most flexible way to bundle and install the SDL2 binaries with your project
is via the pysdl2-dll package on PyPI, which pysdl2 will load automatically if available. This approach allows
you to add the SDL2 binaries as a dependency for your project in a requirements.txt file, a setup.py file, a Pipfile, or
any other form of Python dependency tracking. You can also specify a minimum version of the SDL2 binaries for
your project using this mechanism if your project depends on a function not available in earlier versions of SDL2.

At present, pysdl2-dll does not provide binaries for Linux or other Unix-like OSes due to a lack of official pre-
compiled releases, though Linux support may be added in the future with an appropriate build script and buildbot.
On these platforms, you can require users to install the latest available SDL2 binaries using their preferred package
manager.

Note that although it only provides binaries for certain platforms, pysdl2-dll will install without error on any OS,
making it safe to add as a dependency for cross-platform projects.

1.2.2 Bundling SDL2 without pysdl2-dll

If the user has a SDL2 library installed on the target system, the ctypes hooks of sdl2 try to find it in the OS-specific
standard locations via ctypes.util.find_library(). If you are going to ship your own SDL2 library with
the project or cannot rely on the standard mechanism of ctypes, it is also possible to set the environment variable
PYSDL2_DLL_PATH, which shall point to the directory of the SDL2 library or consist of a list of directories, in which
the SDL2 libraries can be found.

Note: PYSDL2_DLL_PATH is preferred over the standard mechanism. If the module finds a SDL2 library in
PYSDL2_DLL_PATH, it will try to use that one in the first place, before using any SDL2 library installed on the target
system.

Let’s assume, you ship your own library SDL2.dll within your project location fancy_project/third_party. You can set
the environment variable PYSDL2_DLL_PATH before starting Python.

# Win32 platforms
set PYSDL2_DLL_PATH=C:\path\to\fancy_project\third_party

# Unix/Posix-alike environments - bourne shells
export PYSDL2_DLL_PATH=/path/to/fancy_project/third_party

# Unix/Posix-alike environments - C shells
setenv PYSDL2_DLL_PATH /path/to/fancy_project/third_party

# Define multiple paths to search for the libraries - Win32
set PYSDL2_DLL_PATH=C:\first\path;C:\second\path

You also can set the environment variable within Python using os.environ.

dllpath = os.path.join('path', 'to', 'fancy_project', 'third_party')
os.environ["PYSDL2_DLL_PATH"] = dllpath

Note: If you aim to integrate sdl directly into your software and do not want or are not allowed to change the
environment variables, you can also change the os.getenv("PYSDL2_DLL_PATH") query within the sdl2/dll.py
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(or sdl2/sdlimage.py, sdl2/sdlttf.py, sdl2/sdlgfx.py) file to point to the directory, in which you keep the DLL.

1.2.3 Using different SDL2 versions

PySDL2 tries to provide interfaces to the most recent versions of the SDL2 libraries. Sometimes this means that
PySDL2 tries to test for functions that might not be available for your very own project or that are not available on the
target system due to a version of the specific library.

If a PySDL2 function is called that requires a newer version of a binary than the one currently being used, it will raise
a RuntimeWarning indicating the minimum version of SDL2 (or SDL2_mixer, or SDL2_ttf, etc.) required to use the
called function. Additionally, if you already know what minimum versions your project needs, you can check the
linked binary versions at runtime:

if not (sdl2.dll.version >= 2008 and sdl2.sdlttf.dll.version >= 2015):
err = ("This project requires SDL2 >= 2.0.8 and SDL2_ttf >= 2.0.15. "
"Please update your SDL2 binaries and relaunch.")
raise RuntimeError(err)

Binary version numbers are stored as 4-digit integers, with the first digit being the major release, the second digit being
the minor release, and the last two digits indicating the patch level. Thus, SDL2 2.0.10 would be version 2010 and
SDL2 2.0.6 would be 2006.

1.2.4 Known problems with SDL2 binaries

The SDL2 libraries are designed to be highly consistent across platforms, but there are some occasional bugs/issues
with certain common binaries that can result in unexpected problems. Here are the ones we are currently aware of:

Support for XCF images broken in SDL2_image Affects: official 32-bit Windows SDL2_image 2.0.5 binaries, all
official macOS SDL2_image binaries

Support for FLAC and MP3 missing by default in SDL2_mixer Affects: SDL2_mixer installed with Homebrew
on macOS

Support for FLAC/MP3/OGG/MID/MOD broken in SDL2_mixer Affects: official SDL2_mixer 2.0.2 binaries
for macOS and Windows (fixed in 2.0.4)

1.3 Learn to fly - the tutorials

PySDL2 is easy to learn and a powerful multimedia programming framework. It features efficient high- and low-level
structures and an excellent object-oriented programming layout.

The following tutorials will guide you through your first applications written with PySDL2 and introduces certain
parts of the PySDL2 packages to you. They will most likely not cover each single part of PySDL2, but instead show
you the most noteworthy features.

1.3.1 Hello World

Ahhh, the great tradition of saying “Hello World” in a programming language. To whet your appetite, we will do this
with a most simple application, which will display an image. It is not important to understand everything at once,
which will be used by the example. Nearly all parts used now are explained in later chapters, so do not hesitate, if the
one or other explanation is missing.

6 Chapter 1. Contents
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Importing

Let’s start with importing some basic modules, which are necessary to display a small nice window and to do some
basic drawing within that window.

import sys
import sdl2.ext

RESOURCES = sdl2.ext.Resources(__file__, "resources")

We need some resources from the resources folder, so that we have a test image around to display on the window
later on. In your own applications, it is unlikely that you will ever need to import them, but we need them here, so we
use the sdl2.ext.Resources class to have them available.

Window creation and image loading

Any graphical application requires access to the screen, mostly in form of a window, which basically represents a
portion of the screen, the application has access to and the application can manipulate. In most cases that portion has
a border and title bar around it, allowing the user to move it around on the screen and reorganise everything in a way
to fit his needs.

Once we have imported all necessary parts, let’s create a window to have access to the screen, so we can display the
logo and thus represent it to the user.

sdl2.ext.init()

window = sdl2.ext.Window("Hello World!", size=(640, 480))
window.show()

factory = sdl2.ext.SpriteFactory(sdl2.ext.SOFTWARE)
sprite = factory.from_image(RESOURCES.get_path("hello.bmp"))

spriterenderer = factory.create_sprite_render_system(window)
spriterenderer.render(sprite)

First, we initialise the sdl2.ext internals to gain access to the screen and to be able to create windows on top of
it. Once done with that, sdl2.ext.Window will create the window for us and we supply a title to be shown on
the window’s border along with its initial size. Since sdl2.ext.Window instances are not shown by default, we
have to tell the operating system and window manager that there is a new window to display by calling sdl2.ext.
Window.show().

Afterwards, we get an image from the resources folder and create a sdl2.ext.Sprite from it, which can be easily
shown later on. This is done via a sdl2.ext.SpriteFactory , since the factory allows us to switch between
texture-based, hardware-accelerated, and software-based sprites easily.

To display the image, we will use a sdl2.ext.SpriteRenderSystem, which supports the sprite type (texture-
or software-based) and can copy the image to the window for display. The sdl2.ext.SpriteRenderSystem
needs to know, where to copy to, thus we have to supply the window as target for copy and display operations.

All left to do is to initiate the copy process by calling sdl2.ext.SpriteRenderSystem.render() with the
image we created earlier.

Tip: You will notice that the sprite used above will always be drawn at the top-left corner of the sdl2.ext.
Window . You can change the position of where to draw it by changing its sdl2.ext.Sprite.position value.

1.3. Learn to fly - the tutorials 7



PySDL2 Documentation, Release 0.9.7

# will cause the renderer to draw the sprite 10px to the right and
# 20 px to the bottom
sprite.position = 10, 20

# will cause the renderer to draw the sprite 55px to the right and
# 10 px to the bottom
sprite.position = 55, 10

Experiment with different values to see their effect. Do not forget to do this before spriterenderer.
render(sprite) is called.

Making the application responsive

We are nearly done now. We have an image to display, we have a window, where the image should be displayed on,
so we can execute the written code, not?

Well, yes, but the only thing that will happen is that we will notice a short flickering before the application exits.
Maybe we can even see the window with the image for a short moment, but that’s not what we want, do we?

To keep the window on the screen and to make it responsive to user input, such as closing the window, react upon the
mouse cursor or key presses, we have to add a so-called event loop. The event loop will deal with certain types of
actions happening on the window or while the window is focused by the user and - as long as the event loop is running
- will keep the window shown on the screen.

processor = sdl2.ext.TestEventProcessor()
processor.run(window)

Since this is a very first tutorial, we keep things simple here and use a dummy class for testing without actually dealing
with the event loop magic. By calling sdl2.ext.TestEventProcessor.run(), we implicitly start an event
loop, which takes care of the most important parts for us.

And here it ends. . .

The window is shown, the image is shown, great! All left to do is to clean up everything, once the application finishes.
Luckily the sdl2.ext.TestEventProcessor knows when the window is closed, so it will exit from the event
loop. Once it exits, we should clean up the video internals, we initialised at the beginning. Thus, a final call to

sdl2.ext.quit()

should be made.

1.3.2 The Pong Game

The following tutorial will show you some capabilities of the component-based approach, PySDL2 features. We will
create the basics of a simple Pong game implementation here. The basics of creating a event loop, dealing with user
input, moving images around and creating a rendering function are covered in this tutorial.

Getting started

We start with creating the window and add a small event loop, so we are able to close the window and exit the game.

8 Chapter 1. Contents
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import sys
import sdl2
import sdl2.ext

def run():
sdl2.ext.init()
window = sdl2.ext.Window("The Pong Game", size=(800, 600))
window.show()
running = True
while running:

events = sdl2.ext.get_events()
for event in events:

if event.type == sdl2.SDL_QUIT:
running = False
break

window.refresh()
return 0

if __name__ == "__main__":
sys.exit(run())

The import statements, video initialisation and window creation were discussed previously in the Hello World tutorial.
We import everything from the sdl2 package here, too, to have all SDL2 functions available.

Instead of some integrated event processor, a new code fragment is introduced, though.

running = True
while running:

events = sdl2.ext.get_events()
for event in events:

if event.type == sdl2.SDL_QUIT:
running = False
break

window.refresh()

The while loop above is the main event loop of our application. It deals with all kinds of input events that can occur
when working with the window, such as mouse movements, key strokes, resizing operations and so on. SDL handles
a lot for us when it comes to events, so all we need to do is to check, if there are any events, retrieve each event one by
one, and handle it, if necessary. For now, we will just handle the sdl2.SDL_QUIT event, which is raised when the
window is about to be closed.

In any other case we will just refresh the window’s graphics buffer, so it is updated and visible on-screen.

Adding the game world

The window is available and working. Now let’s take care of creating the game world, which will manage the player
paddles, ball, visible elements and everything else. We are going to use an implementation layout loosely based on a
COP1 pattern, which separates data structures and functionality from each other. This allows us to change or enhance
functional parts easily without having to refactor all classes we are implementing.

We start with creating the two player paddles and the rendering engine that will display them.

[...]

(continues on next page)

1 Component-Oriented Programming

1.3. Learn to fly - the tutorials 9
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(continued from previous page)

WHITE = sdl2.ext.Color(255, 255, 255)

class SoftwareRenderer(sdl2.ext.SoftwareSpriteRenderSystem):
def __init__(self, window):

super(SoftwareRenderer, self).__init__(window)

def render(self, components):
sdl2.ext.fill(self.surface, sdl2.ext.Color(0, 0, 0))
super(SoftwareRenderer, self).render(components)

class Player(sdl2.ext.Entity):
def __init__(self, world, sprite, posx=0, posy=0):

self.sprite = sprite
self.sprite.position = posx, posy

def run():
...

world = sdl2.ext.World()

spriterenderer = SoftwareRenderer(window)
world.add_system(spriterenderer)

factory = sdl2.ext.SpriteFactory(sdl2.ext.SOFTWARE)
sp_paddle1 = factory.from_color(WHITE, size=(20, 100))
sp_paddle2 = factory.from_color(WHITE, size=(20, 100))

player1 = Player(world, sp_paddle1, 0, 250)
player2 = Player(world, sp_paddle2, 780, 250)

running = True
while running:

events = sdl2.ext.get_events()
for event in events:

if event.type == sdl2.SDL_QUIT:
running = False
break

world.process()

if __name__ == "__main__":
sys.exit(run())

The first thing to do is to enhance the sdl2.ext.SoftwareSpriteRenderSystem so that it will paint the
whole window screen black on every drawing cycle, before drawing all sprites on the window.

Afterwards, the player paddles will be implemented, based on an sdl2.ext.Entity data container. The player
paddles are simple rectangular sprites that can be positioned anywhere on the window.

In the main program function, we put those things together by creating a sdl2.ext.World, in which the player
paddles and the renderer can live and operate.

Within the main event loop, we allow the world to process all attached systems, which causes it to invoke the
process() methods for all sdl2.ext.System instances added to it.

10 Chapter 1. Contents
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Moving the ball

We have two static paddles centred vertically on the left and right of our window. The next thing to do is to add a ball
that can move around within the window boundaries.

[...]
class MovementSystem(sdl2.ext.Applicator):

def __init__(self, minx, miny, maxx, maxy):
super(MovementSystem, self).__init__()
self.componenttypes = Velocity, sdl2.ext.Sprite
self.minx = minx
self.miny = miny
self.maxx = maxx
self.maxy = maxy

def process(self, world, componentsets):
for velocity, sprite in componentsets:

swidth, sheight = sprite.size
sprite.x += velocity.vx
sprite.y += velocity.vy

sprite.x = max(self.minx, sprite.x)
sprite.y = max(self.miny, sprite.y)

pmaxx = sprite.x + swidth
pmaxy = sprite.y + sheight
if pmaxx > self.maxx:

sprite.x = self.maxx - swidth
if pmaxy > self.maxy:

sprite.y = self.maxy - sheight

class Velocity(object):
def __init__(self):

super(Velocity, self).__init__()
self.vx = 0
self.vy = 0

class Player(sdl2.ext.Entity):
def __init__(self, world, posx=0, posy=0):

[...]
self.velocity = Velocity()

class Ball(sdl2.ext.Entity):
def __init__(self, world, sprite, posx=0, posy=0):

self.sprite = sprite
self.sprite.position = posx, posy
self.velocity = Velocity()

def run():
[...]
sp_ball = factory.from_color(WHITE, size=(20, 20))
[...]
movement = MovementSystem(0, 0, 800, 600)
spriterenderer = SoftwareRenderer(window)

(continues on next page)
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(continued from previous page)

world.add_system(movement)
world.add_system(spriterenderer)

[...]

ball = Ball(world, sp_ball, 390, 290)
ball.velocity.vx = -3

[...]

Two new classes are introduced here, Velocity and MovementSystem. The Velocity class is a simple data
bag. It does not contain any application logic, but consists of the relevant information to represent the movement in a
certain direction. This allows us to mark in-game items as being able to move around.

The MovementSystem in turn takes care of moving the in-game items around by applying the velocity to their
current position. Thus, we can simply enable any Player instance to be movable or not by adding or removing a
velocity attribute to them, which is a Velocity component instance.

Note: The naming is important here. The EBS implementation as described in Working with component-based
entities requires every in-application or in-game item attribute bound to a sdl2.ext.Entity to be the lowercase
class name of its related component.

Player.vel = Velocity(10, 10)

for example would raise an exception, since the system expects Player.vel to be an instance of a Vel component.

The MovementSystem is a specialised sdl2.ext.System, a sdl2.ext.Applicator, which can oper-
ate on combined sets of data. When the sdl2.ext.Applicator.process() method is called, the passed
componentsets iterable will contain tuples of objects that belong to an instance and feature a certain type. The
MovementSystem’s process() implementation hence will loop over sets of Velocity and Sprite instances
that belong to the same sdl2.ext.Entity . Since we have a ball and two players currently available, it typically
would loop over three tuples, two for the individual players and one for the ball.

The sdl2.ext.Applicator thus enables us to process combined data of our in-game items, without creating
complex data structures.

Note: Only entities that contain all attributes (components) are taken into account. If e.g. the Ball class would not
contain a Velocity component, it would not be processed by the MovementSystem.

Why do we use this approach? The sdl2.ext.Sprite objects carry a position, which defines the location at
which they should be rendered, when processed by the SoftwareRenderer. If they should move around (which is
a change in the position), we need to apply the velocity to them.

We also define some more things within the MovementSystem, such as a simple boundary check, so that the players
and ball cannot leave the visible window area on moving around.

Bouncing

We have a ball that can move around as well as the general game logic for moving things around. In contrast to a classic
OO approach we do not need to implement the movement logic within the Ball and Player class individually, since
the basic movement is the same for all (yes, you could have solved that with inheriting Ball and Player from a
MovableObject class in OO).

12 Chapter 1. Contents
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The ball now moves and stays within the bounds, but once it hits the left side, it will stay there. To make it bouncy, we
need to add a simple collision system, which causes the ball to change its direction on colliding with the walls or the
player paddles.

[...]
class CollisionSystem(sdl2.ext.Applicator):

def __init__(self, minx, miny, maxx, maxy):
super(CollisionSystem, self).__init__()
self.componenttypes = Velocity, sdl2.ext.Sprite
self.ball = None
self.minx = minx
self.miny = miny
self.maxx = maxx
self.maxy = maxy

def _overlap(self, item):
pos, sprite = item
if sprite == self.ball.sprite:

return False

left, top, right, bottom = sprite.area
bleft, btop, bright, bbottom = self.ball.sprite.area

return (bleft < right and bright > left and
btop < bottom and bbottom > top)

def process(self, world, componentsets):
collitems = [comp for comp in componentsets if self._overlap(comp)]
if collitems:

self.ball.velocity.vx = -self.ball.velocity.vx

def run():
[...]
world = World()

movement = MovementSystem(0, 0, 800, 600)
collision = CollisionSystem(0, 0, 800, 600)
spriterenderer = SoftwareRenderer(window)

world.add_system(movement)
world.add_system(collision)
world.add_system(spriterenderer)

[...]
collision.ball = ball

running = True
while running:

events = sdl2.ext.get_events()
for event in events:

if event.type == sdl2.SDL_QUIT:
running = False
break

sdl2.SDL_Delay(10)
world.process()

if __name__ == "__main__":

(continues on next page)
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(continued from previous page)

sys.exit(run())

The CollisionSystem only needs to take care of the ball and objects it collides with, since the ball is the only
unpredictable object within our game world. The player paddles will only be able to move up and down within the
visible window area and we already dealt with that within the MovementSystem code.

Whenever the ball collides with one of the paddles, its movement direction (velocity) should be inverted, so that it
bounces back.

Additionally, we won’t run at the full processor speed anymore in the main loop, but instead add a short delay, using
the sdl2.SDL_Delay() function. This reduces the overall load on the CPU and makes the game a bit slower.

Reacting on player input

We have a moving ball that bounces from side to side. The next step would be to allow moving one of the paddles
around, if the player presses a key. The SDL event routines allow us to deal with a huge variety of user and system
events that could occur for our application, but right now we are only interested in key strokes for the Up and Down
keys to move one of the player paddles up or down.

[...]
def run():

[...]
running = True
while running:

events = sdl2.ext.get_events()
for event in events:

if event.type == sdl2.SDL_QUIT:
running = False
break

if event.type == sdl2.SDL_KEYDOWN:
if event.key.keysym.sym == sdl2.SDLK_UP:

player1.velocity.vy = -3
elif event.key.keysym.sym == sdl2.SDLK_DOWN:

player1.velocity.vy = 3
elif event.type == sdl2.SDL_KEYUP:

if event.key.keysym.sym in (sdl2.SDLK_UP, sdl2.SDLK_DOWN):
player1.velocity.vy = 0

sdl2.SDL_Delay(10)
world.process()

if __name__ == "__main__":
sys.exit(run())

Every event that can occur and that is supported by SDL2 can be identified by a static event type code. This allows
us to check for a key stroke, mouse button press, and so on. First, we have to check for sdl2.SDL_KEYDOWN
and sdl2.SDL_KEYUP events, so we can start and stop the paddle movement on demand. Once we identified such
events, we need to check, whether the pressed or released key is actually the Up or Down key, so that we do not start
or stop moving the paddle, if the user presses R or G or whatever.

Whenever the Up or Down key are pressed down, we allow the left player paddle to move by changing its velocity
information for the vertical direction. Likewise, if either of those keys is released, we stop moving the paddle.
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Improved bouncing

We have a moving paddle and we have a ball that bounces from one side to another, which makes the game . . . quite
boring. If you played Pong before, you know that most variations of it will cause the ball to bounce in a certain angle,
if it collides with a paddle. Most of those implementations achieve this by implementing the paddle collision as if the
ball collides with a rounded surface. If it collides with the center of the paddle, it will bounce back straight, if it hits
the paddle near the center, it will bounce back with a pointed angle and on the corners of the paddle it will bounce
back with some angle close to 90 degrees to its initial movement direction.

class CollisionSystem(sdl2.ext.Applicator):
[...]

def process(self, world, componentsets):
collitems = [comp for comp in componentsets if self._overlap(comp)]
if collitems:

self.ball.velocity.vx = -self.ball.velocity.vx

sprite = collitems[0][1]
ballcentery = self.ball.sprite.y + self.ball.sprite.size[1] // 2
halfheight = sprite.size[1] // 2
stepsize = halfheight // 10
degrees = 0.7
paddlecentery = sprite.y + halfheight
if ballcentery < paddlecentery:

factor = (paddlecentery - ballcentery) // stepsize
self.ball.velocity.vy = -int(round(factor * degrees))

elif ballcentery > paddlecentery:
factor = (ballcentery - paddlecentery) // stepsize
self.ball.velocity.vy = int(round(factor * degrees))

else:
self.ball.velocity.vy = - self.ball.velocity.vy

The reworked processing code above simulates a curved paddle by creating segmented areas, which cause the ball
to be reflected in different angles. Instead of doing some complex trigonometry to calculate an accurate angle and
transform it on a x/y plane, we simply check, where the ball collided with the paddle and adjust the vertical velocity.

If the ball now hits a paddle, it can be reflected at different angles, hitting the top and bottom window boundaries. . .
and will stay there. If it hits the window boundaries, it should be reflected, too, but not with a varying angle, but with
the exact angle, it hit the boundary with. This means that we just need to invert the vertical velocity, once the ball hits
the top or bottom.

class CollisionSystem(sdl2.ext.Applicator):
[...]

def process(self, world, componentsets):
[...]

if (self.ball.sprite.y <= self.miny or
self.ball.sprite.y + self.ball.sprite.size[1] >= self.maxy):
self.ball.velocity.vy = - self.ball.velocity.vy

if (self.ball.sprite.x <= self.minx or
self.ball.sprite.x + self.ball.sprite.size[0] >= self.maxx):
self.ball.velocity.vx = - self.ball.velocity.vx
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Creating an enemy

Now that we can shoot back the ball in different ways, it would be nice to have an opponent to play against. We
could enhance the main event loop to recognise two different keys and manipulate the second paddle’s velocity for
two people playing against each other. We also could create a simple computer-controlled player that tries to hit the
ball back to us, which sounds more interesting.

class TrackingAIController(sdl2.ext.Applicator):
def __init__(self, miny, maxy):

super(TrackingAIController, self).__init__()
self.componenttypes = PlayerData, Velocity, sdl2.ext.Sprite
self.miny = miny
self.maxy = maxy
self.ball = None

def process(self, world, componentsets):
for pdata, vel, sprite in componentsets:

if not pdata.ai:
continue

centery = sprite.y + sprite.size[1] // 2
if self.ball.velocity.vx < 0:

# ball is moving away from the AI
if centery < self.maxy // 2:

vel.vy = 3
elif centery > self.maxy // 2:

vel.vy = -3
else:

vel.vy = 0
else:

bcentery = self.ball.sprite.y + self.ball.sprite.size[1] // 2
if bcentery < centery:

vel.vy = -3
elif bcentery > centery:

vel.vy = 3
else:

vel.vy = 0

class PlayerData(object):
def __init__(self):

super(PlayerData, self).__init__()
self.ai = False

class Player(sdl2.ext.Entity):
def __init__(self, world, sprite, posx=0, posy=0, ai=False):

self.sprite = sprite
self.sprite.position = posx, posy
self.velocity = Velocity()
self.playerdata = PlayerData()
self.playerdata.ai = ai

def run():
[...]
aicontroller = TrackingAIController(0, 600)

(continues on next page)
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(continued from previous page)

world.add_system(aicontroller)
world.add_system(movement)
world.add_system(collision)
world.add_system(spriterenderer)

player1 = Player(world, sp_paddle1, 0, 250)
player2 = Player(world, sp_paddle2, 780, 250, True)
[...]
aicontroller.ball = ball

[...]

We start by creating a component PlayerData that flags a player as being AI controlled or not. Afterwards, a
TrackingAIController is implemented, which, depending on the information of the PlayerData component,
will move the specific player paddle around by manipulating its velocity information.

The AI is pretty simple, just following the ball’s vertical movement, trying to hit it at its center, if the ball moves into
the direction of the AI-controlled paddle. As soon as the ball moves away from the paddle, the paddle will move back
to the vertical center.

Tip: Add True as last parameter to the first Player() constructor to see two AIs playing against each other.

Next steps

We created the basics of a Pong game, which can be found in the examples folder. However, there are some more
things to do, such as

• resetting the ball to the center with a random vertical velocity, if it hits either the left or right window bounds

• adding the ability to track the points made by either player, if the ball hit the left or right side

• drawing a dashed line in the middle to make the game field look nicer

• displaying the points made by each player

It is your turn now to implement these features. Go ahead, it is not as complex as it sounds.

• you can reset the ball’s position in the CollisionSystem code, by changing the code for the minx and
maxx test

• you could enhance the CollisionSystem to process PlayerData components and add the functional-
ity to add points there (or write a small processor that keeps track of the ball only and processes only the
PlayerData and video.SoftSprite objects of each player for adding points). Alternatively, you could
use the sdl2.ext.EventHandler class to raise a score count function within the CollisionSystem,
if the ball collides with one of the paddles.

• write an own render sytem, based on sdl2.ext.Applicator, which takes care of position and sprite sets

StaticRepeatingSprite(Entity):
...
self.positions = Positions((400, 0), (400, 60), (400, 120), ...)
...

• draw some simple images for 0-9 and render them as sprites, depending on the points a player made.
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1.3.3 PySDL2 for Pygamers

Care to move to a newer SDL with your Pygame knowledge? Then you should know one thing or two about PySDL2
before hacking code, since it is completely different from Pygame. Do not let that fact scare you away, the basics with
graphics and sound are still the same (as they are fundamental), but you will not find many similarities to the Pygame
API within PySDL2.

Todo: More details, examples, etc.

Technical differences

Pygame is implemented as a mixture of Python, C and Assembler code, wrapping 3rd party libraries with CPython
API interfaces. PySDL2 in contrast is written in pure Python, using ctypes to interface with the C interfaces of 3rd
party libraries.

API differences

pygame

pygame sdl2
init() sdl2.SDL_Init() where appropriate
quit() sdl2.SDL_Quit() where appropriate
error No equivalent
get_error() sdl2.SDL_GetError()
set_error() sdl2.SDL_SetError()
get_sdl_version() sdl2.SDL_GetVersion()
get_sdl_byteorder() sdl2.SDL_BYTEORDER
register_quit() No equivalent planned
encode_string() No equivalent planned
encode_file_path() No equivalent planned

sdl2.ext.init() initializes only the video subsystem. By comparison, pygame.init() initializes all Pygame
submodules (which includes initializing other SDL subsystems).

pygame.cdrom

PySDL2 does not feature any CD-ROM related interfaces. They were removed in SDL2 and PySDL2 does not provide
its own facilities.

pygame.Color

You can find a similar class in sdl2.ext.Color. It does not feature a set_length() or correct_gamma()
method, though.

pygame.cursors

PySDL2 does not feature any pre-defined cursor settings at the moment.
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pygame.display

pygame.display sdl2
init() sdl2.ext.init()
quit() sdl2.ext.quit()
get_init() sdl2.SDL_WasInit()
set_mode() sdl2.ext.Window
get_surface() sdl2.ext.Window.get_surface()
flip() sdl2.ext.Window.refresh()
update() sdl2.ext.Window.refresh()
get_driver() sdl2.SDL_GetCurrentVideoDriver()
Info No equivalent
get_wm_info() sdl2.SDL_GetWindowWMInfo()
list_modes() sdl2.SDL_GetNumDisplayModes()
mode_ok() sdl2.SDL_GetClosestDisplayMode()
gl_get_attribute() sdl2.SDL_GL_GetAttribute()
gl_set_attribute() sdl2.SDL_GL_SetAttribute()
get_active() No equivalent
iconify() sdl2.ext.Window.minimize()
toggle_fullscreen() sdl2.SDL_SetWindowFullscreen()
set_gamma() sdl2.SDL_SetWindowBrightness()
set_gamma_ramp() sdl2.SDL_SetWindowGammaRamp.()
set_icon() sdl2.SDL_SetWindowIcon()
set_caption() sdl2.ext.Window.title
get_caption() sdl2.ext.Window.title
set_palette() sdl2.SDL_SetSurfacePalette()

pygame.draw

Drawing primitives can be accessed through either the sdl2.SDL_RenderDraw*() and sdl2.
SDL_RenderFill*() functions or the more powerful sdl2.sdlgfx module,

pygame.event

pygame.event sdl2
pump() sdl2.SDL_PumpEvents()
get() sdl2.SDL_PollEvent() or sdl2.ext.get_events()
poll() sdl2.SDL_PollEvent()
wait() sdl2.SDL_WaitEvent()
peek() sdl2.SDL_PeepEvents()
clear() sdl2.SDL_FlushEvents()
event_name() No equivalent
set_blocked() sdl2.SDL_EventState()
get_blocked() sdl2.SDL_EventState()
set_allowed() sdl2.SDL_EventState()
set_grab() sdl2.SDL_SetWindowGrab()
get_grab() sdl2.SDL_GetWindowGrab()
post() sdl2.SDL_PeepEvents()
Event sdl2.SDL_Event
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pygame.font

pygame.font sdl2
init() sdl2.sdlttf.TTF_Init()
quit() sdl2.sdlttf.TTF_Quit()
get_init() sdl2.sdlttf.TTF_WasInit()
get_default_font() No equivalent planned1

get_fonts() No equivalent planned1

match_font() No equivalent planned1

SysFont No equivalent planned1

Font No equivalent planned1

pygame.freetype

PySDL2 does not feature direct FreeType support.

pygame.gfxdraw

PySDL2 offers SDL_gfx support through the sdl2.sdlgfx module.

pygame.image

pygame.image sdl2
load() sdl2.sdlimage.IMG_Load(), sdl2.ext.load_image()
save() sdl2.surface.SDL_SaveBMP(), sdl2.sdlimage.IMG_SavePNG()
get_extended() sdl2.sdlimage.IMG_isBMP() et al.
tostring() No equivalent yet
fromstring() No equivalent yet
frombuffer() No equivalent yet

pygame.joystick

pygame.joystick sdl2
init() sdl2.SDL_Init()
quit() sdl2.SDL_Quit()
get_init() sdl2.SDL_WasInit()
get_count() sdl2.joystick.SDL_NumJoysticks()
Joystick() sdl2.joystick.SDL_Joystick and related functions

1 Check https://bitbucket.org/marcusva/python-utils for an easy to use system font detection module
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pygame.key

pygame.key sdl2
get_focused() sdl2.keyboard.SDL_GetKeyboardFocus()
get_pressed() sdl2.keyboard.SDL_GetKeyboardState()
get_mods() sdl2.keyboard.SDL_GetModState()
set_mods() sdl2.keyboard.SDL_SetModState()
set_repeat() Based on the OS/WM settings, no equivalent
get_repeat() Based on the OS/WM settings, no equivalent
name() sdl2.keyboard.SDL_GetKeyName()

pygame.locals

Constants in PySDL2 are spread across the different packages and modules, depending on where they originate from.

pygame.mixer

pygame.mixer sdl2
init() sdl2.sdlmixer.Mix_Init()
quit() sdl2.sdlmixer.Mix_Quit()
get_init() No equivalent planned
stop() sdl2.sdlmixer.Mix_HaltChannel(), sdl2.sdlmixer.Mix_HaltGroup(),

sdl2.sdlmixer.Mix_HaltMusic()
pause() sdl2.sdlmixer.Mix_Pause(), sdl2.sdlmixer.Mix_PauseMusic()
unpause() sdl2.sdlmixer.Mix_Resume(), sdl2.sdlmixer.Mix_ResumeMusic()
fadeout() sdl2.sdlmixer.Mix_FadeOutChannel(), sdl2.sdlmixer.

Mix_FadeOutGroup(), sdl2.sdlmixer.Mix_FadeOutMusic()
set_num_channels()sdl2.sdlmixer.Mix_AllocateChannels()
get_num_channels()sdl2.sdlmixer.Mix_AllocateChannels()
set_reserved()sdl2.sdlmixer.Mix_ReserveChannels()
find_channel()No equivalent planned
get_busy() sdl2.sdlmixer.Mix_ChannelFinished()
Sound sdl2.sdlmixer.Mix_Chunk
Channel No equivalent, use the channel functions instead

pygame.mixer.music

See pygame.mixer.
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pygame.mouse

pygame.mouse sdl2
get_pressed() sdl2.mouse.SDL_GetMouseState()
get_pos() sdl2.mouse.SDL_GetMouseState()
get_rel() sdl2.mouse.SDL_GetRelativeMouseState()
set_pos() sdl2.mouse.SDL_WarpMouseInWindow()
set_visible() sdl2.mouse.SDL_ShowCursor()
get_focused() sdl2.mouse.SDL_GetMouseFocus()
set_cursor() sdl2.mouse.SDL_GetCursor()
get_cursor() sdl2.mouse.SDL_SetCursor()

pygame.movie

No such module is planned for PySDL2.

pygame.Overlay

You can work with YUV overlays by using the sdl2.render module with sdl2.render.SDL_Texture ob-
jects.

pygame.PixelArray

You can access pixel data of sprites and surfaces directly via the sdl2.ext.PixelView class. It does not feature
comparison or extractions methods.

pygame.Rect

No such functionality is available for PySDL2. Rectangles are represented via sdl2.rect.SDL_Rect for low-
level SDL2 wrappers or 4-value tuples.

pygame.scrap

PySDL2 offers basic text-based clipboard access via the sdl2.clipboard module. A feature-rich clipboard API
as for Pygame does not exist yet.

pygame.sndarray

No such module is available for PySDL2 yet.

pygame.sprite

PySDL2 uses a different approach of rendering and managing sprite objects via a component-based system and the
sdl2.ext.Sprite class. A sprite module as for Pygame is not planned.
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pygame.Surface

pygame.Surface sdl2
blit() sdl2.surface.SDL_BlitSurface(), sdl2.ext.SpriteRenderSystem
convert() sdl2.surface.SDL_ConvertSurface()
convert_alpha() sdl2.surface.SDL_ConvertSurface()
copy() sdl2.surface.SDL_ConvertSurface()
fill() sdl2.surface.SDL_FillRect(), sdl2.surface.SDL_FillRects(), sdl2.ext.fill()
scroll() No equivalent planned
set_colorkey() sdl2.surface.SDL_SetColorKey()
get_colorkey() sdl2.surface.SDL_GetColorKey()
set_alpha() sdl2.surface.SDL_SetSurfaceAlphaMod()
get_alpha() sdl2.surface.SDL_GetSurfaceAlphaMod()
lock() sdl2.surface.SDL_LockSurface()
unlock() sdl2.surface.SDL_UnlockSurface()
mustlock() sdl2.surface.SDL_MUSTLOCK()
get_locked() sdl2.surface.SDL_Surface.locked
get_locks() No equivalent planned
get_at() Direct access to the pixels for surfaces can be achieved via the sdl2.ext.PixelView class
set_at() Direct access to the pixels for surfaces can be achieved via the sdl2.ext.PixelView class
get_at_mapped() No equivalent planned
get_palette() via sdl2.surface.SDL_Surface.format and the sdl2.pixels.SDL_PixelFormat.palette attribute
get_palette_at() sdl2.pixels.SDL_Palette.colors[offset]
set_palette() sdl2.surface.SDL_SetSurfacePalette()
set_palette_at() sdl2.pixels.SDL_Palette.colors[offset]
map_rgb() sdl2.pixels.SDL_MapRGB()
unmap_rgb() sdl2.pixels.SDL_GetRGB()
set_clip() sdl2.surface.SDL_SetClipRect()
get_clip() sdl2.surface.SDL_GetClipRect()
subsurface() sdl2.ext.subsurface()
get_parent() No equivalent yet
get_abs_parent() As for get_parent
get_offset() As for get_parent
get_abs_offset() As for get_parent
get_size() sdl2.ext.Sprite.size, sdl2.surface.SDL_Surface.w, sdl2.surface.SDL_Surface.h
get_width() sdl2.ext.Sprite.size[0], sdl2.surface.SDL_Surface.w,
get_height() sdl2.ext.Sprite.size[1], sdl2.surface.SDL_Surface.h
get_rect() No equivalent planned
get_bitsize() sdl2.pixels.SDL_PixelFormat.BitsPerPixel
get_bytesize() sdl2.pixels.SDL_PixelFormat.BytesPerPixel
get_flags() sdl2.surface.SDL_Surface.flags
get_pitch() sdl2.surface.SDL_Surface.pitch
get_masks() sdl2.pixels.SDL_PixelFormat.Rmask, . . .
get_shifts() sdl2.pixels.SDL_PixelFormat.Rshift, . . .
get_losses() sdl2.pixels.SDL_PixelFormat.Rloss, . . .
get_bounding_rect() No equivalent planned
get_view() sdl2.ext.PixelView
get_buffer() sdl2.ext.PixelView or sdl2.surface.SDL_Surface.pixels
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pygame.surfarray

2D and 3D pixel access can be achieved via the sdl2.ext.PixelView class in environments with-
out numpy. Simplified numpy-array creation with direct pixel access (similar to pygame.surfarray.
pixels2d() and pygame.surfarray.pixels3d()) is available via sdl2.ext.pixels2d() and sdl2.
ext.pixels3d().

pygame.time

pygame.time sdl2
get_ticks() sdl2.timer.SDL_GetTicks()
wait() sdl2.timer.SDL_Delay()
delay() sdl2.timer.SDL_Delay()
Clock No equivalent planned

pygame.transform

The are no transformation helpers in PySDL2 at moment. Those might be implemented later on via numpy helpers,
the Python Imaging Library or other 3rd party packages.

pygame.version

pygame.version sdl2
ver sdl2.__version__
vernum sdl2.version_info

1.4 API reference

This is the core documentation of the various modules, classes and functions PySDL2 offers. If you want to have a
quick overview about the modules, use the modindex. If you just want to look up a specific class, method or function,
use the genindex or search.

1.4.1 sdl2 - SDL2 library wrapper

The sdl2 package is a ctypes-based wrapper around the SDL2 library. It wraps nearly all publicly accessible
structures and functions of the SDL2 library to be accessible from Python code.

A detailed documentation about the behaviour of the different functions can found within the SDL2 documentation.

Usage

You can use sdl2 in nearly exactly the same way as you would do with the SDL library and C code.

A brief example in C code:
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#include <SDL.h>

int main(int argc, char *argv[]) {
int running;
SDL_Window *window;
SDL_Surface *windowsurface;
SDL_Surface *image;
SDL_Event event;

SDL_Init(SDL_INIT_VIDEO);

window = SDL_CreateWindow("Hello World",
SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
592, 460, SDL_WINDOW_SHOWN);

windowsurface = SDL_GetWindowSurface(window);

image = SDL_LoadBMP("exampleimage.bmp");
SDL_BlitSurface(image, NULL, windowsurface, NULL);

SDL_UpdateWindowSurface(window);
SDL_FreeSurface(image);

running = 1;
while (running) {

while (SDL_PollEvent(&event) != 0) {
if (event.type == SDL_QUIT) {

running = 0;
break;

}
}

}
SDL_DestroyWindow(window);
SDL_Quit();
return 0;

}

Doing the same in Python:

import sys
import ctypes
from sdl2 import *

def main():
SDL_Init(SDL_INIT_VIDEO)
window = SDL_CreateWindow(b"Hello World",

SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
592, 460, SDL_WINDOW_SHOWN)

windowsurface = SDL_GetWindowSurface(window)

image = SDL_LoadBMP(b"exampleimage.bmp")
SDL_BlitSurface(image, None, windowsurface, None)

SDL_UpdateWindowSurface(window)
SDL_FreeSurface(image)

running = True
event = SDL_Event()

(continues on next page)
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(continued from previous page)

while running:
while SDL_PollEvent(ctypes.byref(event)) != 0:

if event.type == SDL_QUIT:
running = False
break

SDL_DestroyWindow(window)
SDL_Quit()
return 0

if __name__ == "__main__":
sys.exit(main())

You can port code in a straightforward manner from one language to the other, though it is important to know about
the limitations and slight differences mentioned below. Also, PySDL2 offers advanced functionality, which also feels
more ‘pythonic’, via the sdl2.ext package.

Missing interfaces

The following functions, classes, constants and macros of SDL2 are not available within sdl2.

• SDL_REVISION and SDL_REVISION_NUMBER from SDL_revision.h

• SDL_NAME() from SDL_name.h

• SDL_MostSignificantBitIndex32() and SDL_HasExactlyOneBitSet32 from SDL_bits.h

• Most functions from SDL2_stdinc.h (most are for math and string operations Python already has excellent
built-in support for)

• Everything from SDL_main.h

• Everything from SDL_system.h

• Everything from SDL_assert.h

• Everything from SDL_thread.h

• Everything from SDL_atomic.h

• Everything from SDL_opengl.h (see PyOpenGL for a compatible OpenGL API)

• Everything from SDL_mutex.h

• Everything from SDL_sensor.h (currently only supports iOS & Android APIs)

Additional interfaces

The following functions, classes, constants and macros are not part of SDL2, but were introduced by sdl2.

sdl2.ALL_PIXELFORMATS
Tuple containing all SDL2 pixel format constants (SDL_PIXELFORMAT_INDEX1LSB, . . . ,
SDL_PIXELFORMAT_RGB565, . . . ).

sdl2.AUDIO_FORMATS
Set containing all SDL2 audio format constants (AUDIO_U8, AUDIO_S8, . . . AUDIO_F32LSB, . . . ).

sdl2.rw_from_object(obj : object)→ SDL_RWops
Creates a SDL_RWops from any Python object. The Python object must at least support the following methods:
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read(length) -> data

length is the size in bytes to be read. A call to len(data) must return the correct amount of bytes
for the data, so that len(data) / [size in bytes for a single element from data] returns the amount of
elements. Must raise an error on failure.

seek(offset, whence) -> int

offset denotes the offset to move the read/write pointer of the object to. whence indicates the move-
ment behaviour and can be one of the following values:

• RW_SEEK_SET - move to offset from the start of the file

• RW_SEEK_CUR - move by offset from the relative location

• RW_SEEK_END - move to offset from the end of the file

If it could not move read/write pointer to the desired location, an error must be raised.

tell() -> int

Must return the current offset. This method must only be provided, if seek() does not return any
value.

close() -> None

Closes the object(or its internal data access methods). Must raise an error on failure.

write(data) -> None

Writes the passed data(which is a string of bytes) to the object. Must raise an error on failure.

Note: The write() method is optional and only necessary, if the passed object should be able to write
data.

The returned sdl2.SDL_RWops is a pure Python object and must not be freed via sdl2.SDL_FreeRW().

1.4.2 sdl2.sdlgfx - SDL2_gfx library wrapper

The sdl2.sdlgfx module is a ctypes-based wrapper around the SDL2_gfx library. It wraps nearly all publicly
accessible structures and functions of the SDL2_gfx library to be accessible from Python code. Note that unlike the
other SDL2 modules supported by this package, SDL2_gfx is not an official part of the SDL2 project.

Detailed documentation about the behaviour of the different SDL2_gfx functions can found here on on the SDL2_gfx
project website.

1.4.3 sdl2.sdlimage - SDL2_image library wrapper

The sdl2.sdlimage module is a ctypes-based wrapper around the SDL2_image library. It wraps nearly all
publicly accessible structures and functions of the SDL2_image library to be accessible from Python code.

A detailed documentation about the behaviour of the different functions can found within the SDL2_image documen-
tation.
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1.4.4 sd2.sdlmixer - SDL2_mixer library wrapper

The sdl2.sdlmixer module is a ctypes-based wrapper around the SDL2_mixer library. It wraps nearly all
publicly accessible structures and functions of the SDL2_mixer library to be accessible from Python code.

A detailed documentation about the behaviour of the different functions can found within the SDL2_mixer documen-
tation.

1.4.5 sd2.sdlttf - SDL2_ttf library wrapper

The sdl2.sdlttf module is a ctypes-based wrapper around the SDL2_ttf library. It wraps nearly all publicly
accessible structures and functions of the SDL2_ttf library to be accessible from Python code.

A detailed documentation about the behaviour of the different functions can found within the SDL2_ttf documentation.

1.4.6 sdl2.ext - Python extensions for SDL2

The sdl2.ext package provides advanced functionality for creating applications using SDL2 and Python. It offers
a rich set of modules, classes and functions, such as easy image loading, basic user interface elements, resource
management and sprite and (on-screen) scene systems.

Learn more about

Common algorithms

sdl2.ext.cohensutherland(left : int, top : int, right : int, bottom : int, x1 : int, y1 : int, x2 : int, y2 :
int)→ int, int, int, int

This implements the Cohen-Sutherland line clipping algorithm. left, top, right and bottom denote the clipping
area, into which the line defined by x1, y1 (start point) and x2, y2 (end point) will be clipped.

If the line does not intersect with the rectangular clipping area, four None values will be returned as tuple.
Otherwise a tuple of the clipped line points will be returned in the form (cx1, cy1, cx2, cy2).

sdl2.ext.liangbarsky(left : int, top : int, right : int, bottom : int, x1 : int, y1 : int, x2 : int, y2 : int)→
int, int, int, int

This implements the Liang-Barsky line clipping algorithm. left, top, right and bottom denote the clipping area,
into which the line defined by x1, y1 (start point) and x2, y2 (end point) will be clipped.

If the line does not intersect with the rectangular clipping area, four None values will be returned as tuple.
Otherwise a tuple of the clipped line points will be returned in the form (cx1, cy1, cx2, cy2).

sdl2.ext.clipline(left : int, top : int, right : int, bottom : int, x1 : int, y1 : int, x2 : int, y2 : int[,
method=liangbarsky])→ int, int, int, int

Clips a line to a rectangular area.

sdl2.ext.point_on_line(p1 : iterable, p2 : iterable, point : iterable)→ bool
Checks, if point, a two-value tuple, is on the line segment defined by p1 and p2.

Converting sequences

This module provides various functions and classes to access sequences and buffer-style objects in different ways. It
also provides conversion routines to improve the interoperability of sequences with ctypes data types.

28 Chapter 1. Contents

http://docs.python.org/library/ctypes.html#module-ctypes
http://www.libsdl.org/projects/SDL_mixer/docs/index.html
http://www.libsdl.org/projects/SDL_mixer/docs/index.html
http://docs.python.org/library/ctypes.html#module-ctypes
http://www.libsdl.org/projects/SDL_ttf/docs/index.html
http://docs.python.org/library/ctypes.html#module-ctypes


PySDL2 Documentation, Release 0.9.7

Providing read-write access for sequential data

Two classes allow you to access sequential data in different ways. The CTypesView provides byte-wise access to
iterable objects and allows you to convert the object representation to matching byte-widths for ctypes or other
modules.

Depending on the the underlying object and the chosen size of each particular item of the object, the CTypesView
allows you to operate directly on different representations of the object’s contents.

>>> text = bytearray("Hello, I am a simple ASCII string!")
>>> ctview = CTypesView(text, itemsize=1)
>>> ctview.view[0] = 0x61
>>> print(text)
aello, I am a simple ASCII string!"
>>> ctview.to_uint16()[3] = 0x6554
>>> print(text)
aello,Te am a simple ASCII string!"

The snippet above provides a single-byte sized view on a bytearray() object. Afterwards, the first item of the view
is changed, which causes a change on the bytearray(), on the first item as well, since both, the CTypesView
and the bytearray() provide a byte-wise access to the contents.

By using CTypesView.to_uint16(), we change the access representation to a 2-byte unsigned integer ctypes
pointer and change the fourth 2-byte value, I to something else.

>>> text = bytearray("Hello, I am a simple ASCII string!")
>>> ctview = CTypesView(text, itemsize=2)
>>> ctview.view[0] = 0x61
>>> print(text)
aello, I am a simple ASCII string!"
>>> ctview.to_uint16()[3] = 0x6554
>>> print(text) aello,Te am a simple ASCII string!"

If the encapsuled object does not provide a (writable) buffer() interface, but is iterable, the CTypesView will
create an internal copy of the object data using Python’s array module and perform all operations on that copy.

>>> mylist = [18, 52, 86, 120, 154, 188, 222, 240]
>>> ctview = CTypesView(mylist, itemsize=1, docopy=True)
>>> print(ctview.object)
array('B', [18, 52, 86, 120, 154, 188, 222, 240])
>>> ctview.view[3] = 0xFF
>>> print(mylist)
[18, 52, 86, 120, 154, 188, 222, 240]
>>> print(ctview.object)
array('B', [18, 52, 86, 255, 154, 188, 222, 240])

As for directly accessible objects, you can define your own itemsize to be used. If the iterable does not provide a direct
byte access to their contents, this won’t have any effect except for resizing the item widths.

>>> mylist = [18, 52, 86, 120, 154, 188, 222, 240]
>>> ctview = CTypesView(mylist, itemsize=4, docopy=True)
>>> print(ctview.object)
array('I', [18L, 52L, 86L, 120L, 154L, 188L, 222L, 240L])
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Accessing data over multiple dimensions

The second class, MemoryView provides an interface to access data over multiple dimensions. You can layout and
access a simple byte stream over e.g. two or more axes, providing a greater flexibility for functional operations and
complex data.

Let’s assume, we are reading image data from a file stream into some buffer object and want to access and manipulate
the image data. Images feature two axes, one being the width, the other being the height, defining a rectangular
graphics area.

When we read all data from the file, we have an one-dimensional view of the image graphics. The MemoryView
allows us to define a two-dimensional view over the image graphics, so that we can operate on both, rows and columns
of the image.

>>> imagedata = bytearray("some 1-byte graphics data")
>>> view = MemoryView(imagedata, 1, (5, 5))
>>> print(view)
[[s, o, m, e, ], [1, -, b, y, t], [e, , g, r, a], [p, h, i, c, s], [ , d, a, t, a]]
>>> for row in view:
... print(row)
...
[s, o, m, e, ]
[1, -, b, y, t]
[e, , g, r, a]
[p, h, i, c, s]
[ , d, a, t, a]
>>> for row in view:
... row[1] = "X"
... print row
...
[s, X, m, e, ]
[1, X, b, y, t]
[e, X, g, r, a]
[p, X, i, c, s]
[ , X, a, t, a]
>>> print(imagedata)
sXme 1XbyteXgrapXics Xata

On accessing a particular dimension of a MemoryView , a new MemoryView is created, if it does not access a single
element.

>>> firstrow = view[0]
>>> type(firstrow)
<class 'sdl2.ext.array.MemoryView'>
>>> type(firstrow[0])
<type 'bytearray'>

A MemoryView features, similar to Python’s builtin memoryview, dimensions and strides, accessible via the
MemoryView.ndim and MemoryView.strides attributes.

>>> view.ndim
2
>>> view.strides
(5, 5)

The MemoryView.strides, which have to be passed on creating a new MemoryView , define the layout of the
data over different dimensions. In the example above, we created a 5x5 two-dimensional view to the image graphics.
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>>> twobytes = MemoryView(imagedata, 2, (5, 1))
>>> print(twobytes)
[[sX, me, 1, Xb, yt], [eX, gr, ap, Xi, cs]]

Array API

class sdl2.ext.CTypesView(obj : iterable[, itemsize=1[, docopy=False[, objsize=None]]])
A proxy class for byte-wise accessible data types to be used in ctypes bindings. The CTypesView provides a
read-write access to arbitrary objects that are iterable.

In case the object does not provide a buffer() interface for direct access, the CTypesView can copy the
object’s contents into an internal buffer, from which data can be retrieved, once the necessary operations have
been performed.

Depending on the item type stored in the iterable object, you might need to provide a certain itemsize, which
denotes the size per item in bytes. The objsize argument might be necessary of iterables, for which len() does
not return the correct amount of objects or is not implemented.

bytesize
Returns the length of the encapsuled object in bytes.

is_shared
Indicates, if changes on the CTypesView data effect the encapsuled object directly. if not, this means that
the object was copied internally and needs to be updated by the user code outside of the CTypesView.

object
The encapsuled object.

view
Provides a read-write aware view of the encapsuled object data that is suitable for usage from ctypes.

to_bytes()→ ctypes.POINTER
Returns a byte representation of the encapsuled object. The return value allows a direct read-write access to
the object data, if it is not copied. The ctypes.POINTER() points to an array of ctypes.c_ubyte.

to_uint16()→ ctypes.POINTER
Returns a 16-bit representation of the encapsuled object. The return value allows a direct read-write ac-
cess to the object data, if it is not copied. The ctypes.POINTER() points to an array of ctypes.
c_ushort.

to_uint32()→ ctypes.POINTER
Returns a 32-bit representation of the encapsuled object. The return value allows a direct read-write access
to the object data, if it is not copied. The ctypes.POINTER() points to an array of ctypes.c_uint.

to_uint64()→ ctypes.POINTER
Returns a 64-bit representation of the encapsuled object. The return value allows a direct read-write ac-
cess to the object data, if it is not copied. The ctypes.POINTER() points to an array of ctypes.
c_ulonglong.

class sdl2.ext.MemoryView(source : object, itemsize : int, strides : tuple[, getfunc=None[, set-
func=None[, srcsize=None]]])

The MemoryView provides a read-write access to arbitrary data objects, which can be indexed.

itemsize denotes the size of a single item. strides defines the dimensions and the length (n items * itemsize) for
each dimension. getfunc and setfunc are optional parameters to provide specialised read and write access to the
underlying source. srcsize can be used to provide the correct source size, if len(source) does not return the
absolute size of the source object in all dimensions.
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Note: The MemoryView is a pure Python-based implementation and makes heavy use of recursion for multi-
dimensional access. If you aim for speed on accessing a n-dimensional object, you want to consider using
a specialised library such as numpy. If you need n-dimensional access support, where such a library is not
supported, or if you need to provide access to objects, which do not fulfill the requirements of that particular
libray, MemoryView can act as solid fallback solution.

itemsize
The size of a single item in bytes.

ndim
The number of dimensions of the MemoryView .

size
The size in bytes of the underlying source object.

source
The underlying data source.

strides
A tuple defining the length in bytes for accessing all elements in each dimension of the MemoryView .

sdl2.ext.to_ctypes(dataseq : iterable, dtype[, mcount=0])→ array, int
Converts an arbitrary sequence to a ctypes array of the specified dtype and returns the ctypes array and amount
of items as two-value tuple.

Raises a TypeError, if one or more elements in the passed sequence do not match the passed dtype.

sdl2.ext.to_list(dataseq : iterable)→ list
Converts a ctypes array to a list.

sdl2.ext.to_tuple(dataseq : iterable)→ tuple
Converts a ctypes array to a tuple.

sdl2.ext.create_array(obj : object, itemsize : int)→ array.array
Creates an array.array based copy of the passed object. itemsize denotes the size in bytes for a single
element within obj.

Color handling

class sdl2.ext.Color(r=255, g=255, b=255, a=255)
A simple RGBA-based color implementation. The Color class uses a byte-wise representation of the 4 channels
red, green, blue and alpha transparency, so that the values range from 0 to 255. It allows basic arithmetic
operations, e.g. color addition or subtraction and conversions to other color spaces such as HSV or CMY.

r
The red channel value of the Color.

g
The green channel value of the Color.

b
The blue channel value of the Color.

a
The alpha channel value of the Color.

cmy
The CMY representation of the Color. The CMY components are in the ranges C = [0, 1], M = [0, 1],
Y = [0, 1]. Note that this will not return the absolutely exact CMY values for the set RGB values in all
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cases. Due to the RGB mapping from 0-255 and the CMY mapping from 0-1 rounding errors may cause
the CMY values to differ slightly from what you might expect.

hsla
The HSLA representation of the Color. The HSLA components are in the ranges H = [0, 360], S = [0,
100], L = [0, 100], A = [0, 100]. Note that this will not return the absolutely exact HSL values for the
set RGB values in all cases. Due to the RGB mapping from 0-255 and the HSL mapping from 0-100 and
0-360 rounding errors may cause the HSL values to differ slightly from what you might expect.

hsva
The HSVA representation of the Color. The HSVA components are in the ranges H = [0, 360], S = [0,
100], V = [0, 100], A = [0, 100]. Note that this will not return the absolutely exact HSV values for the
set RGB values in all cases. Due to the RGB mapping from 0-255 and the HSV mapping from 0-100 and
0-360 rounding errors may cause the HSV values to differ slightly from what you might expect.

i1i2i3
The I1I2I3 representation of the Color. The I1I2I3 components are in the ranges I1 = [0, 1], I2 = [-0.5,
0.5], I3 = [-0.5, 0.5]. Note that this will not return the absolutely exact I1I2I3 values for the set RGB values
in all cases. Due to the RGB mapping from 0-255 and the I1I2I3 from 0-1 rounding errors may cause the
I1I2I3 values to differ slightly from what you might expect.

normalize() -> (float, float, float, float)
Returns the normalised RGBA values of the Color as floating point values in the range [0, 1].

__add__(self, color)→ Color
__sub__(self, color)→ Color
__mul__(self, color)→ Color
__div__(self, color)→ Color
__truediv__(self, color)→ Color
__mod__(self, color)→ Color

Basic arithmetic functions for Color values. The arithmetic operations +, -, *, /, % are supported
by the Color class and work on a per-channel basis. This means, that the operation

color = color1 + color2

is the same as

color = Color()
color.r = min(color1.r + color2.r, 255)
color.g = min(color1.g + color2.g, 255)
...

The operations guarantee that the channel values stay in the allowed range of [0, 255].

sdl2.ext.argb_to_color(v : int)→ Color
sdl2.ext.ARGB(v : int)→ Color

Converts an integer value to a Color, assuming the integer represents a 32-bit ARGB value.

sdl2.ext.convert_to_color(v : object)→ Color
sdl2.ext.COLOR(v : object)→ Color

Tries to convert the passed value to a Color object. The value can be an arbitrary Python object, which is passed
to the different other conversion functions. If one of them succeeds, the Color will be returned to the caller. If
none succeeds, a ValueError will be raised.

If the color is an integer value, it is assumed to be in ARGB layout.

sdl2.ext.rgba_to_color(v : int)→ Color
sdl2.ext.RGBA(v : int)→ Color

Converts an integer value to a Color, assuming the integer represents a 32-bit RGBA value.
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sdl2.ext.is_rgb_color(v : object)→ bool
Checks, if the passed value is an item that could be converted to a RGB color.

sdl2.ext.is_rgba_color(v : object)→ bool
Checks, if the passed value is an item that could be converted to a RGBA color.

sdl2.ext.string_to_color(v : string)→ Color
Converts a hex color string or color name to a Color value. Supported hex values are:

• #RGB

• #RGBA

• #RRGGBB

• #RRGGBBAA

• 0xRGB

• 0xRGBA

• 0xRRGGBB

• 0xRRGGBBAA

sdl2.ext.colorpalettes - predefined sets of colors

Indexed color palettes. Each palette is a tuple of sdl2.ext.Color objects.

The following palettes are currently available:

Palette Identi-
fier

Description

MONOPALETTE 1-bit monochrome palette (black and white).
GRAY2PALETTE2-bit grayscale palette with black, white and two shades of gray.
GRAY4PALETTE4-bit grayscale palette with black, white and 14 shades shades of gray.
GRAY8PALETTE8-bit grayscale palette with black, white and 254 shades shades of gray.
RGB3PALETTE 3-bit RGB color palette with pure red, green and blue and their complementary colors as well

as black and white.
CGA-
PALETTE

CGA color palette.

EGAPALETTE EGA color palette.
VGA-
PALETTE

8-bit VGA color palette.

WEB-
PALETTE

“Safe” web color palette with 225 colors.

Initialization routines

init() simply calls SDL_Init() to initialize only the video subsystem. If the call fails, SDLError is raised. See
pygame for a comparison between this function and pygame.init().

API

exception sdl2.ext.SDLError(msg=None)
An SDL2 specific Exception class. if no msg is provided, the message will be set to the value of sdl2.
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error.SDL_GetError()

sdl2.ext.init()→ None
Initialises the underlying SDL2 video subsystem. Raises a SDLError, if the SDL2 video subsystem could not
be initialised.

sdl2.ext.quit()→ None
Quits the underlying SDL2 video subysystem. If no other SDL2 subsystems are active, this will also call
quit(), sdl2.sdlttf.TTF_Quit() and sdl2.sdlimage.IMG_Quit().

sdl2.ext.get_events()→ [SDL_Event, SDL_Event, ...]
Gets all SDL events that are currently on the event queue.

class sdl2.ext.TestEventProcessor
A simple event processor for testing purposes.

run(window : Window)→ None
Starts an event loop without actually processing any event. The method will run endlessly until a
SDL_QUIT event occurs.

sdl2.ext.compat - Python compatibility helpers

The sdl2.ext.compat module is for internal purposes of the sdl2 package and should not be used outside
of the package. Classes, methods and interfaces might change between versions and there is no guarantee of API
compatibility on different platforms and python implementations or between releases.

sdl2.ext.compat.ISPYTHON2
True, if executed in a Python 2.x compatible interpreter, False otherwise.

sdl2.ext.compat.ISPYTHON3
True, if executed in a Python 3.x compatible interpreter, False otherwise.

sdl2.ext.compat.long([x[, base]])

Note: Only defined for Python 3.x, for which it is the same as int().

sdl2.ext.compat.unichr(i)

Note: Only defined for Python 3.x, for which it is the same as chr().

sdl2.ext.compat.unicode(string[, encoding[, errors]])

Note: Only defined for Python 3.x, for which it is the same as str().

sdl2.ext.compat.callable(x)→ bool

Note: Only defined for Python 3.x, for which it is the same as isinstance(x, collections.
Callable)
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sdl2.ext.compat.byteify(x : string, enc : string)→ bytes
Converts a string to a bytes() object.

sdl2.ext.compat.stringify(x : bytes, enc : string)→ string
Converts a bytes() to a string object.

sdl2.ext.compat.isiterable(x)→ bool
Shortcut for isinstance(x, collections.Iterable).

sdl2.ext.compat.platform_is_64bit()→ bool
Checks, if the interpreter is 64-bit capable.

@sdl2.ext.compat.deprecated
A simple decorator to mark functions and methods as deprecated. This will print a deprecation message each
time the function or method is invoked.

sdl2.ext.compat.deprecation(message : string)→ None
Prints a deprecation message using the warnings.warn() function.

exception sdl2.ext.compat.UnsupportedError(obj : object[, msg=None])
Indicates that a certain class, function or behaviour is not supported in the specific execution environment.

@sdl2.ext.compat.experimental
A simple decorator to mark functions and methods as experimental. This will print a warning each time the
function or method is invoked.

exception sdl2.ext.compat.ExperimentalWarning(obj : object[, msg=None])
Indicates that a certain class, function or behaviour is in an experimental state.

2D drawing routines for software surfaces

Note: The drawing functions within this module are unoptimised and should not be considered fast. If you want
improved drawing of 2D primitives, including hardware acceleration, you should use the methods of the Renderer
instead.

sdl2.ext.prepare_color(color : object, target : object)→ int
Prepares the passed color for a specific target. color can be any object type that can be processed
by convert_to_color(). target can be any sdl2.SDL_PixelFormat, sdl2.SDL_Surface or
SoftwareSprite instance.

The returned integer will be a color value matching the target’s pixel format.

sdl2.ext.fill(target : object, color : object[, area=None])→ None
Fills a certain area on the passed target with a color. If no area is provided, the entire target will be filled with
the passed color. If an iterable item is provided as area (such as a list or tuple), it will be first checked, if the
item denotes a single rectangular area (4 integer values) before assuming it to be a sequence of rectangular areas
to fill with the color.

target can be any sdl2.SDL_Surface or SoftwareSprite instance.

sdl2.ext.line(target : object, color : object[, width=1])→ None
Draws one or multiple lines on the passed target. line can be a sequence of four integers for a single line in the
form (x1, y1, x2, y2) or a sequence of a multiple of 4 for drawing multiple lines at once, e.g. (x1,
y1, x2, y2, x3, y3, x4, y4, ...).

target can be any sdl2.SDL_Surface or SoftwareSprite instance.
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Working with component-based entities

sdl2.ext supports a component oriented programming pattern to separate object instances, carried data and pro-
cessing logic within applications or games. It uses an entity based approach, in which object instances are unique
identifiers, while their data is managed within components, which are stored separately. For each individual compo-
nent type a processing system will take care of all necessary updates on running the application.

Component-based patterns

Component-based means that - instead of a traditional OOP approach - object information are split up into separate
data bags for reusability and that those data bags are separated from any application logic.

Behavioural design

Imagine a car class in traditional OOP, which might look like

class Car:
def __init__(self):

self.color = "red"
self.position = 0, 0
self.velocity = 0, 0
self.sprite = get_some_car_image()
...

def drive(self, timedelta):
self.position[0] = self.velocity[0] * timedelta
self.position[1] = self.velocity[1] * timedelta
...

def stop(self):
self.velocity = 0, 0
...

def render(self, screen):
screen.display(self.sprite)

mycar = new Car()
mycar.color = "green"
mycar.velocity = 10, 0

The car features information stored in attributes (color, position, . . . ) and behaviour (application logic,
drive(), stop() . . . ).

A component-based approach aims to split and reduce the car to a set of information and external systems providing
the application logic.

class Car:
def __init__(self):

self.color = "red"
self.position = 0, 0
self.velocity = 0, 0
self.sprite = get_some_car_image()

class CarMovement:
def drive(self, car, timedelta):

car.position[0] = car.velocity[0] * timedelta
car.position[1] = car.velocity[1] * timedelta
...

(continues on next page)
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(continued from previous page)

def stop(self):
car.velocity = 0, 0

class CarRenderer:
def render(self, car, screen):

screen.display(car.sprite)

At this point of time, there is no notable difference between both approaches, except that the latter one adds additional
overhead.

The benefit comes in, when you

• use subclassing in your OOP design

• want to change behavioural patterns on a global scale or based on states

• want to refactor code logic in central locations

• want to cascade application behaviours

The initial Car class from above defines, how it should be displayed on the screen. If you now want to add a feature
for rescaling the screen size after the user activates the magnifier mode, you need to refactor the Car and all other
classes that render things on the screen, have to consider all subclasses that override the method and so on. Refactoring
the CarRenderer code by adding a check for the magnifier mode sounds quite simple in contrast to that, not?

The same applies to the movement logic - inverting the movement logic requires you to refactor all your classes instead
of a single piece of application code.

Information design

Subclassing with traditional OOP for behavioural changes also might bloat your classes with unnecessary information,
causing the memory footprint for your application to rise without any need. Let’s assume you have a Truck class
that inherits from Car. Let’s further assume that all trucks in your application look the same. Why should any of
those carry a sprite or color attribute? You would need to refactor your Car class to get rid of those superfluous
information, adding another level of subclassing. If at a later point of time you decide to give your trucks different
colors, you need to refactor everything again.

Wouldn’t it be easier to deal with colors, if they are available on the truck and leave them out, if they are not? We
initially stated that the component-based approach aims to separate data (information) from code logic. That said, if
the truck has a color, we can handle it easily, if it has not, we will do as usual.

Also, checking for the color of an object (regardless, if it is a truck, car, aeroplane or death star) allows us to apply the
same or similar behaviour for every object. If the information is available, we will process it, if it is not, we will not
do anything.

All in all

Once we split up the previously OOP-style classes into pure data containers and some separate processing code for
the behaviour, we are talking about components and (processing) systems. A component is a data container, ideally
grouping related information on a granular level, so that it is easy to (re)use. When you combine different components
to build your in-application objects and instantiate those, we are talking about entities.
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Component provides information (data bag)

Entity In-application instance that consists of component items

System Application logic for working with Entity items and their component data

World The environment that contains the different System instances and all Entity items with their component data

Within a strict COP design, the application logic (ideally) only knows about data to process. It does not know anything
about entities or complex classes and only operates on the data.
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To keep things simple, modular and easy to maintain and change, you usually create small processing systems, which
perform the necessary operations on the data they shall handle. That said, a MovementSystem for our car entity
would only operate on the position and velocity component of the car entity. It does not know anything about the the
car’s sprite or sounds that the car makes, since this is nothing it has to deal with.

To display the car on the screen, a RenderingSystem might pick up the sprite component of the car, maybe along
with the position information (so it knows, where to place the sprite) and render it on the screen.

If you want the car to play sounds, you would add an audio playback system, that can perform the task. Afterwards
you can add the necessary audio information via a sound component to the car and it will make noise.

Component-based design with sdl2.ext

Note: This section will deal with the specialities of COP patterns and provide the bare minimum of information. If
you are just starting with such a design, it is recommended to read through the The Pong Game tutorial.

sdl2.ext provides a World class in which all other objects will reside. The World will maintain both, Entity
and component items, and allows you to set up the processing logic via the System and Applicator classes.

>>> appworld = World()

Components can be created from any class that inherits from the object type and represent the data bag of informa-
tion for the entity and application world. Ideally, they should avoid any application logic (except from getter and setter
properties).

class Position2D(object):
def __init__(self, x=0, y=0):

self.x = x
self.y = y
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Entity objects define the in-application objects and only consist of component-based attributes. They also require a
World at object instantiation time.

class CarEntity(Entity):
def __init__(self, world, x=0, y=0):

self.position2d = Position2D(x, y)

Note: The world argument in __init__() is necessary. It will be passed to the internal __new__() constructor
of the Entity and stores a reference to the World and also allows the Entity to store its information in the
World.

The Entity also requries its attributes to be named exactly as their component class name, but in lowercase letters.
If you name a component MyAbsolutelyAwesomeDataContainer, an Entity will force you to write the
following:

class SomeEntity(Entity):
def __init__(self, world):

self.myabsolutelyawesomedatacontainer = MyAbsolutelyAwesomeDataContainer()

Note: This is not entirely true. A reference of the object will be stored on a per-class-in-mro basis. This means that
if MyAbsolutelyAwesomeDataContainer inherits from ShortName, you can also do:

class SomeEntity(Entity):
def __init__(self, world):

self.shortname = MyAbsolutelyAwesomeDataContainer()

Components should be as atomic as possible and avoid complex inheritance. Since each value of an Entity is stored
per class in its mro list, components inheriting from the same class(es) will overwrite each other on conflicting classes:

class Vector(Position2D):
def __init__(self, x=0, y=0, z=0):

super(Vector, self).__init__(x, y)

class SomeEntity(Entity):
def __init__(self, world):

# This will associate self.position2d with the new Position2D
# value, while the previous Vector association is overwritten
self.position2d = Position2D(4, 4)

# self.vector will also associate a self.position2d attribute
# with the Entity, since Vector inherits from Position2D. The
# original association will vanish, and each call to
# entity.position2d will effectively manipulate the vector!
self.vector = Vector(1,2,3)

API

class sdl2.ext.Entity(world : World)

An entity is a specific object living in the application world. It does not carry any data or application
logic, but merely acts as identifier label for data that is maintained in the application world itself.
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As such, it is a composition of components, which would not exist without the entity identifier. The
entity itself is non-existent to the application world as long as it does not carry any data that can be
processed by a system within the application world.

id
The id of the Entity. Every Entity has a unique id, that is represented by a uuid.UUID instance.

world
The World the entity resides in.

delete()→ None
Deletes the Entity from its World. This basically calls World.delete() with the Entity .

class sdl2.ext.Applicator
A processing system for combined data sets. The Applicator is an enhanced System that receives com-
bined data sets based on its set System.componenttypes

is_applicator
A boolean flag indicating that this class operates on combined data sets.

componenttypes
A tuple of class identifiers that shall be processed by the Applicator.

process(world : World, componentsets : iterable)
Processes tuples of component items. componentsets will contain object tuples, that match the
componenttypes of the Applicator. If, for example, the Applicator is defined as

class MyApplicator(Applicator):
def __init__(self):

self.componenttypes = (Foo, Bar)

its process method will receive (Foo, Bar) tuples

def process(self, world, componentsets):
for foo_item, bar_item in componentsets:

...

Additionally, the Applicator will not process all possible combinations of valid components, but only
those, which are associated with the same Entity . That said, an Entity must contain a Foo as well as
a Bar component in order to have them both processed by the Applicator (while a System with the
same componenttypes would pick either of them, depending on their availability).

class sdl2.ext.System
A processing system within an application world consumes the components of all entities, for which it was set
up. At time of processing, the system does not know about any other component type that might be bound to
any entity.

Also, the processing system does not know about any specific entity, but only is aware of the data carried by all
entities.

componenttypes
A tuple of class identifiers that shall be processed by the System

process(world : World, components : iterable)
Processes component items.

This method has to be implemented by inheriting classes.

class sdl2.ext.World
An application world defines the combination of application data and processing logic and how the data will be
processed. As such, it is a container object in which the application is defined.
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The application world maintains a set of entities and their related components as well as a set of systems that
process the data of the entities. Each processing system within the application world only operates on a certain
set of components, but not all components of an entity at once.

The order in which data is processed depends on the order of the added systems.

systems
The processing system objects bound to the world.

add_system(system : object)
Adds a processing system to the world. The system will be added as last item in the processing order.

The passed system does not have to inherit from System, but must feature a componenttypes attribute
and a process() method, which match the signatures of the System class

class MySystem(object):
def __init__(self):

# componenttypes can be any iterable as long as it
# contains the classes the system should take care of
self.componenttypes = [AClass, AnotherClass, ...]

def process(self, world, components):
...

If the system shall operate on combined component sets as specified by the Applicator, the class
instance must contain a is_applicator property, that evaluates to True

class MyApplicator(object):
def __init__(self):

self.is_applicator = True
self.componenttypes = [...]

def process(self, world, components):
pass

The behaviour can be changed at run-time. The is_applicator attribute is evaluated for every call to
World.process().

delete(entity : Entity)
Removes an Entity from the World, including all its component data.

delete_entities(entities : iterable)
Removes a set of Entity instances from the World, including all their component data.

insert_system(index : int, system : System)
Adds a processing System to the world. The system will be added at the specified position in the pro-
cessing order.

get_entities(component : object)→ [Entity, ...]
Gets the entities using the passed component.

Note: This will not perform an identity check on the component but rely on its __eq__ implementation
instead.

process()
Processes all component items within their corresponding System instances.

remove_system(system : System)
Removes a processing System from the world.
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General purpose event handling routines

class sdl2.ext.EventHandler(sender)
A simple event handling class, which manages callbacks to be executed.

The EventHandler does not need to be kept as separate instance, but is mainly intended to be used as attribute
in event-aware class objects.

>>> def myfunc(sender):
... print("event triggered by %s" % sender)
...
>>> class MyClass(object):
... def __init__(self):
... self.anevent = EventHandler(self)
...
>>> myobj = MyClass()
>>> myobj.anevent += myfunc
>>> myobj.anevent()
event triggered by <__main__.MyClass object at 0x801864e50>

callbacks
A list of callbacks currently bound to the EventHandler.

sender
The responsible object that executes the EventHandler.

add(callback : Callable)
Adds a callback to the EventHandler.

remove(callback : Callable)
Removes a callback from the EventHandler.

__call__(*args)→ [ ... ]
Executes all connected callbacks in the order of addition, passing the sender of the EventHandler as
first argument and the optional args as second, third, . . . argument to them.

This will return a list containing the return values of the callbacks in the order of their execution.

class sdl2.ext.MPEventHandler(sender)
An asynchronous event handling class based on EventHandler, in which callbacks are executed in parallel.
It is the responsibility of the caller code to ensure that every object used maintains a consistent state. The
MPEventHandler class will not apply any locks, synchronous state changes or anything else to the arguments
or callbacks being used. Consider it a “fire-and-forget” event handling strategy.

Note: The MPEventHandler relies on the multiprocessing module. If the module is not available in
the target environment, a sdl2.ext.compat.UnsupportedError is raised.

Also, please be aware of the restrictions that apply to the multiprocessingmodule; arguments and callback
functions for example have to be pickable, etc.

__call__(*args)→ AsyncResult
Executes all connected callbacks within a multiprocessing.pool.Pool, passing the sender as
first argument and the optional args as second, third, . . . argument to them.

This will return a multiprocessing.pool.AsyncResult containing the return values of the call-
backs in the order of their execution.
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Text rendering routines

class sdl2.ext.BitmapFont(surface : Sprite, size : iterable[, mapping=None)
A bitmap graphics to character mapping. The BitmapFont class uses an image surface to find and render font
character glyphs for text. It requires a mapping table, which denotes the characters available on the image.

The mapping table is a list of strings, where each string reflects a line of characters on the image. Each character
within each line has the same size as specified by the size argument.

A typical mapping table might look like

[ '0123456789',
'ABCDEFGHIJ',
'KLMNOPQRST',
'UVWXYZ ',
'abcdefghij',
'klmnopqrst',
'uvwxyz ',
',;.:!?+-()' ]

surface
The sdl2.SDL_Surface containing the character bitmaps.

offsets
A dict containing the character offsets on the surface.

mapping
The character mapping table, a list of strings.

size
The size of an individual glyph bitmap on the font.

render(text : string[, bpp=None])→ Sprite
Renders the passed text on a new Sprite and returns it. If no explicit bpp are provided, the bpp settings
of the surface are used.

render_on(surface : Sprite, text : string[, offset=(0, 0)]) -> (int, int, int, int)
Renders a text on the passed sprite, starting at a specific offset. The top-left start position of the text will
be the passed offset and a 4-value tuple with the changed area will be returned.

contains(c : string)→ bool
Checks, whether a certain character exists in the font.

can_render(text : string)→ bool
Checks, whether all characters in the passed text can be rendered.

class sdl2.ext.FontManager(font_path : str[, alias=None[, size=16[, color=Color(255, 255,
255)[, bg_color=Color(0, 0, 0)[, index=0]]]]])

Manage fonts and rendering of text.

One font path must be given to initialise the FontManager. default_font will be set to this font. size is the
default font size in pixels. color and bg_color will give the FontManager a default color. index will select a
specific font face from a file containing multiple font faces. The first face is always at index 0. It can be used
for TTC (TrueType Font Collection) fonts.

bg_color
The sdl2.ext.Color to be used as background color.

color
The sdl2.ext.Color to be used for rendering text.

1.4. API reference 45



PySDL2 Documentation, Release 0.9.7

default_font
Returns the name of the current default font being used by the FontManager. On assigning
default_font, the value must be a loaded font alias.

size
The default font size in pixels.

add(font_path : str[, alias=None[, size=None[, index=0]]]))→ sdl2.sdlttf.TTF_Font
Add a font to the FontManager. alias is by default the font name, any other name can be passed, size is
the font size in pixels and defaults to size. index selects a specific font face from a TTC (TrueType Font
Collection) file. Returns the font pointer stored in fonts.

close()
Closes all fonts used by the FontManager.

render(text : str[, alias=None[, size=None[, width=None[, color=None[, bg_color=None[, **kwargs
]]]]]])→ sdl2.SDL_Surface

Renders text to a surface. This method uses the font designated by the passed alias or, if alias is omitted,
by the set default_font. A size can be passed even if the font was not loaded with this size. A
width can be given for automatic line wrapping. If no bg_color or color are given, it will default to the
FontManager’s bg_color and color.

User interface elements

User interface elements within sdl2.ext are simple Sprite objects, which are enhanced by certain input hooks;
as such, they are not classes on their own, but implemented as mixins. The user input itself is handled by an
UIProcessor object, which takes care of delegating input events, such as mouse movements, clicks and keyboard
input, to the correct UI element.

Depending on the event type (e.g. pressing a mouse button), the UIProcessor will execute its matching method (e.g.
mousedown()) with only those UI elements, which support the event type.

UI element types

Every sdl2.ext UI element is a simple Sprite object, to which additional attributes and methods are bound.

Every UI element features the following attributes
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element.uitype

The uitype attribute can have one of the following values, identifying the UI element:

• BUTTON - a UI element, which can react on mouse input

• CHECKBUTTON - as BUTTON, but it retains its state on clicks

• TEXTENTRY - a UI element that reacts on keyboard input

element.events

A dictionary containing the SDL2 event mappings. Each supported SDL2 event (e.g.
SDL_MOUSEMOTION) is associated with a bound EventHandler acting as callback for user code
(e.g. mousemotion()).

Depending on the exact type of the element, it will feature additional methods and attributes explained below.

Button elements

BUTTON UI elements feature a state attribute, which can be one of the following values.

state Description
RELEASED Indicates that the UI element is not pressed.
HOVERED Indicates that the mouse cursor is currently hovering the UI element.
PRESSED Indicates that a mouse button is pressed on the UI element.

BUTTON UI elements react with the following event handlers on events:

button.motion(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if the mouse moves around while being over the BUTTON.

button.pressed(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if a mouse button is pressed on the BUTTON.

button.released(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if a mouse button is released on the BUTTON.

button.click(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if a mouse button is pressed and released on the BUTTON.

Besides the BUTTON a special CHECKBUTTON UI element type exists, which enhances the BUTTON bindings by an
additional checked attribute. The checked attribute switches its status (False to True and True to False)
every time the UI element is clicked.

Text input elements

TEXTENTRY elements react on text input, once they are activated. Text being input, once a TEXTENTRY has been
activated, is stored in its text attribute.

The TEXTENTRY reacts with the following event handlers on events:

textentry.motion(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if the mouse moves around while being over the TEXTENTRY.

textentry.pressed(event : sdl2.events.SDL_Event)
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An EventHandler that is invoked, if a mouse button is pressed on the TEXTENTRY.

textentry.released(event : sdl2.events.SDL_Event)

An EventHandler that is invoked, if a mouse button is released on the TEXTENTRY.

textentry.keydown(event : sdl2.events.SDL_Event)

An EventHandler that is invoked on pressing a key.

textentry.keyup(event : sdl2.events.SDL_Event)

An EventHandler that is invoked on releasing a key.

textentry.input(event : sdl2.events.SDL_Event)

An EventHandler that is invoked on text input events. Text input events are automatically created,
once the UIProcessor activates a TEXTENTRY UI element.

textentry.editing(event : sdl2.events.SDL_Event)

An EventHandler that is invoked on text editing events. Text editing events are automatically created,
once the UIProcessor activates a TEXTENTRY UI element.

Text editing events are however only raised, if an IME system is involved, which combines glyphs and
symbols to characters or word fragments.

API

class sdl2.ext.UIFactory(spritefactory : SpriteFactory[, **kwargs])
A factory class for creating UI elements. The UIFactory allows you to create UI elements based on the
Sprite class. To do this, it requires a SpriteFactory , which will create the sprites, to which the
UIFactory then binds the additional methods and attributes.

The additional kwargs are used as default arguments for creating sprites within the factory methods.

default_args
A dictionary containing the default arguments to be passed to the sprite creation methods of the bound
SpriteFactory .

spritefactory
The SpriteFactory being used for creating new Sprite objects.

create_button(**kwargs)→ Sprite
Creates a new button UI element.

kwargs are the arguments to be passed for the sprite construction and can vary depending on the sprite
type. See SpriteFactory.create_sprite() for further details.

create_check_button(**kwargs)→ Sprite
Creates a new checkbutton UI element.

kwargs are the arguments to be passed for the sprite construction and can vary depending on the sprite
type. See SpriteFactory.create_sprite() for further details.

create_text_entry(**kwargs)→ Sprite
Creates a new textentry UI element.

kwargs are the arguments to be passed for the sprite construction and can vary depending on the sprite
type. See SpriteFactory.create_sprite() for further details.
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from_color(color : object, size)→ Sprite
Creates a UI element with a specific color.

uitype must be one of the supported UI element types classifying the type of UI element to be created.

from_image(uitype : int, fname : str)→ Sprite
Creates a UI element from an image file. The image must be loadable via load_image().

uitype must be one of the supported UI element types classifying the type of UI element to be created.

from_object(uitype : int, obj: object)→ Sprite
Creates a UI element from an object. The object will be passed through sdl2.
rwops_from_object() in order to try to load image data from it.

uitype must be one of the supported UI element types classifying the type of UI element to be created.

from_surface(uitype : int, surface : SDL_Surface[, free=False])→ Sprite
Creates a UI element from the passed sdl2.surface.SDL_Surface. If free is set to True, the
passed surface will be freed automatically.

uitype must be one of the supported UI element types classifying the type of UI element to be created.

class sdl2.ext.UIProcessor
A processing system for user interface elements and events.

handlers
A dict containing the mapping of SDL2 events to the available EventHandler bindings of the
UIProcessor.

activate(component : object)→ None
Activates a UI control to receive text input.

deactivate(component : object)→ None
Deactivate the currently active UI control.

passevent(component : object, event : SDL_Event)→ None
Passes the event to a component without any additional checks or restrictions.

mousemotion(component : object, event : SDL_Event)→ None
Checks, if the event’s motion position is on the component and executes the component’s event handlers
on demand. If the motion event position is not within the area of the component, nothing will be done. In
case the component is a BUTTON, its state will be adjusted to reflect, if it is currently hovered or not.

mousedown(component : object, event : SDL_Event)→ None
Checks, if the event’s button press position is on the component and executes the component’s event
handlers on demand. If the button press position is not within the area of the component, nothing will be
done.

In case the component is a BUTTON, its state will be adjusted to reflect, if it is currently pressed or not.

In case the component is a TEXTENTRY and the pressed button is the primary mouse button, the compo-
nent will be marked as the next control to activate for text input.

mouseup(self, component, event)→ None
Checks, if the event’s button release position is on the component and executes the component’s event
handlers on demand. If the button release position is not within the area of the component, nothing will be
done.

In case the component is a BUTTON, its state will be adjusted to reflect, whether it is hovered or not.

If the button release followed a button press on the same component and if the button is the primary button,
the click() event handler is invoked, if the component is a BUTTON.

1.4. API reference 49



PySDL2 Documentation, Release 0.9.7

dispatch(obj : object, event : SDL_Event)→ None
Passes an event to the given object. If obj is a World object, UI relevant components will receive the
event, if they support the event type. If obj is a single object, obj.events must be a dict consisting of
SDL event type identifiers and EventHandler instances bound to the object. If obj is a iterable, such as
a list or set, every item within obj must feature an events attribute as described above.

process(world : World, components : iterable)→ None
The UIProcessor class does not implement the process() method by default. Instead it uses
dispatch() to send events around to components. process() does nothing.

Image loaders

sdl2.ext.get_image_formats() -> (str, str, ...)
Gets the formats supported by PySDL2 in the default installation.

sdl2.ext.load_image(fname : str[, enforce=None])→ sdl2.SDL_Surface
Creates a sdl2.SDL_Surface from an image file.

This function makes use of the Python Imaging Library, if it is available on the target execution environment.
The function will try to load the file via sdl2 first. If the file could not be loaded, it will try to load it via
sdl2.sdlimage and PIL.

You can force the function to use only one of them, by passing the enforce as either "PIL" or "SDL".

Note: This will call sdl2.sdlimage.IMG_Init() implicitly with the default arguments, if the module is
available and if sdl2.SDL_LoadBMP() failed to load the image.

sdl2.ext.particles - A simple particle system

class sdl2.ext.particles.ParticleEngine
A simple particle processing system. The ParticleEngine takes care of creating, updating and deleting
particles via callback functions. It only decreases the life of the particles by itself and marks them as dead, once
the particle’s life attribute has reached 0 or below.

createfunc
Function for creating new particles. The function needs to take two arguments, the world argument
passed to process() and a list of the particles considered dead (Particle.life <= 0).

def creation_func(world, deadparticles):
...

updatefunc
Function for updating existing, living particles. The function needs to take two arguments, the world
argument passed to process() and a set of the still living particles.

def update_func(world, livingparticles):
...

deletefunc
Function for deleting dead particles. The function needs to take two arguments, the world argument
passed to process() and a list of the particles considered dead (Particle.life <= 0).

def deletion_func(world, deadparticles):
...
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process(world : World, components : iterable)→ None
Processes all particle components, decreasing their life by 1.

Once the life of all particle components has been decreased properly and the particles considered dead (life
<= 0) are identified, the creation, update and deletion callbacks are invoked.

The creation callback takes the passed world as first and the list of dead particles as second argument.

def particle_createfunc(world, list_of_dead_ones):
...

Afterwards the still living particles are passed to the update callback, which also take the passed world as
first and the living particles as set as second argument.

def particle_updatefunc(world, set_of_living_ones):
...

Finally, the dead particles need to be deleted in some way or another, which is done by the deletion
callback, taking the passed world as first and the list of dead particles as second argument.

def particle_deletefunc(world, list_of_dead_ones):
...

class sdl2.ext.particles.Particle(x, y, life : int)
A simple particle component type. It only contains information about a x- and y-coordinate and its current life
time. The life time will be decreased by 1, every time the particle is processed by the ParticleEngine.

x
The x coordinate of the particle.

y
The y coordinate of the particle.

life
The remaining life time of the particle.

position
The x- and y-coordinate of the particle as tuple.

2D and 3D direct pixel access

class sdl2.ext.PixelView(source : object)
2D MemoryView for SoftwareSprite and sdl2.SDL_surface pixel access.

Note:

If necessary, the source surface will be locked for accessing its pixel data. The lock will be removed
once the PixelView is garbage-collected or deleted.

The PixelView uses a y/x-layout. Accessing view[N]will operate on the Nth row of the underlying surface.
To access a specific column within that row, view[N][C] has to be used.

Note: PixelView is implemented on top of the MemoryView class. As such it makes heavy use of recursion
to access rows and columns and can be considered as slow in contrast to optimised ndim-array solutions such as
numpy.

1.4. API reference 51



PySDL2 Documentation, Release 0.9.7

sdl2.ext.pixels2d(source : object, transpose : bool)
Creates a 2D pixel array, based on numpy.ndarray, from the passed source. source can be a
SoftwareSprite or sdl2.SDL_Surface. The SDL_Surface of the source will be locked and un-
locked automatically.

By default, the returned array is formatted so that the first dimension corresponds to height on the source and the
second dimension corresponds to width, contrary to PIL and PyOpenGL convention. To obtain an array where
the first dimension is width and second dimension is height, set the transpose argument to False.

The source pixels will be accessed and manipulated directly.

Note: pixels2d() is only usable, if the numpy package is available within the target environment. If numpy
could not be imported, a sdl2.ext.compat.UnsupportedError will be raised.

sdl2.ext.pixels3d(source : object, transpose : bool)
Creates a 3D pixel array, based on numpy.ndarray, from the passed source. source can be a
SoftwareSprite or sdl2.SDL_Surface. The SDL_Surface of the source will be locked and un-
locked automatically.

By default, the returned array is formatted so that the first dimension corresponds to height on the source and the
second dimension corresponds to width, contrary to PIL and PyOpenGL convention. To obtain an array where
the first dimension is width and second dimension is height, set the transpose argument to False.

The source pixels will be accessed and manipulated directly.

Note: pixels3d() is only usable, if the numpy package is available within the target environment. If numpy
could not be imported, a sdl2.ext.compat.UnsupportedError will be raised.

Resource management

Every application usually ships with various resources, such as image and data files, configuration files and so on.
Accessing those files in the folder hierarchy or in a bundled format for various platforms can become a complex task.
The Resources class allows you to manage different application data in a certain directory, providing a dictionary-
style access functionality for your in-application resources.

Let’s assume, your application has the following installation layout

Application Directory
Application.exe
Application.conf
data/

background.jpg
button1.jpg
button2.jpg
info.dat

Within the Application.exe code, you can - completely system-agnostic - define a new resource that keeps track
of all data items.

apppath = os.path.dirname(os.path.abspath(__file__))
appresources = Resources(os.path.join(apppath, "data"))
# Access some images
bgimage = appresources.get("background.jpg")

(continues on next page)
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(continued from previous page)

btn1image = appresources.get("button1.jpg")
...

To access individual files, you do not need to concat paths the whole time and regardless of the current directory, your
application operates on, you can access your resource files at any time through the Resources instance, you created
initially.

The Resources class is also able to scan an index archived files, compressed via ZIP or TAR (gzip or bzip2 com-
pression), and subdiectories automatically.

Application Directory
Application.exe
Application.conf
data/

audio/
example.wav

background.jpg
button1.jpg
button2.jpg
graphics.zip

[tileset1.bmp
tileset2.bmp
tileset3.bmp
]

info.dat

tilesimage = appresources.get("tileset1.bmp")
audiofile = appresources.get("example.wav")

If you request an indexed file via Resources.get(), you will receive a io.BytesIO stream, containing the file
data, for further processing.

Note: The scanned files act as keys within the Resources class. This means that two files, that have the same
name, but are located in different directories, will not be indexed. Only one of them will be accessible through the
Resources class.

API

class sdl2.ext.Resources([path=None[, subdir=None[, excludepattern=None]]])
The Resources class manages a set of file resources and eases accessing them by using relative paths, scanning
archives automatically and so on.

add(filename : string)
Adds a file to the resource container. Depending on the file type (determined by the file suffix or name)
the file will be automatically scanned (if it is an archive) or checked for availability (if it is a stream or
network resource).

add_archive(filename : string[, typehint="zip" ])
Adds an archive file to the resource container. This will scan the passed archive and add its contents to the
list of available and accessible resources.

add_file(filename : string)
Adds a file to the resource container. This will only add the passed file and do not scan an archive or check
the file for availability.
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get(filename : string)→ BytesIO
Gets a specific file from the resource container.

Raises a KeyError, if the filename could not be found.

get_filelike(filename : string)→ file object
Similar to get(), but tries to return the original file handle, if possible. If the found file is only available
within an archive, a io.BytesIO instance will be returned.

Raises a KeyError, if the filename could not be found.

get_path(filename : string)→ string
Gets the path of the passed filename. If filename is only available within an archive, a string in the form
filename@archivename will be returned.

Raises a KeyError, if the filename could not be found.

scan(path : string[, subdir=None[, excludepattern=None])
Scans a path and adds all found files to the resource container. If a file within the path is a supported
archive (ZIP or TAR), its contents will be indexed aut added automatically.

The method will consider the directory part (os.path.dirname) of the provided path as path to scan,
if the path is not a directory. If subdir is provided, it will be appended to the path and used as starting point
for adding files to the resource container.

excludepattern can be a regular expression to skip directories, which match the pattern.

sdl2.ext.open_tarfile(archive : string, filename : string[, directory=None[, ftype=None]]) →
BytesIO

Opens and reads a certain file from a TAR archive. The result is returned as BytesIO stream. filename can
be a relative or absolute path within the TAR archive. The optional directory argument can be used to supply a
relative directory path, under which filename will be searched.

ftype is used to supply additional compression information, in case the system cannot determine the compression
type itself, and can be either “gz” for gzip compression or “bz2” for bzip2 compression.

If the filename could not be found or an error occurred on reading it, None will be returned.

Raises a TypeError, if archive is not a valid TAR archive or if ftype is not a valid value of (“gz”, “bz2”).

Note: If ftype is supplied, the compression mode will be enforced for opening and reading.

sdl2.ext.open_url(filename : string[, basepath=None])→ file object
Opens and reads a certain file from a web or remote location. This function utilizes the urllib2 module
for Python 2.7 and urllib for Python 3.x, which means that it is restricted to the types of remote locations
supported by the module.

basepath can be used to supply an additional location prefix.

sdl2.ext.open_zipfile(archive : string, filename : string[, directory : string])→ BytesIO
Opens and reads a certain file from a ZIP archive. The result is returned as BytesIO stream. filename can
be a relative or absolute path within the ZIP archive. The optional directory argument can be used to supply a
relative directory path, under which filename will be searched.

If the filename could not be found, a KeyError will be raised. Raises a TypeError, if archive is not a valid
ZIP archive.
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Sprite, texture and pixel surface routines

sdl2.ext.TEXTURE
Indicates that texture-based rendering or sprite creation is wanted.

sdl2.ext.SOFTWARE
Indicates that software-based rendering or sprite creation is wanted.

class sdl2.ext.Sprite
A simple 2D object, implemented as abstract base class.

x
The top-left horizontal offset at which the Sprite resides.

y
The top-left vertical offset at which the Sprite resides.

position
The top-left position (x and y) as tuple.

size
The width and height of the Sprite as tuple.

Note: This is an abstract property and needs to be implemented by inheriting classes.

area
The rectangular area occupied by the Sprite.

depth
The layer depth on which to draw the Sprite. Sprite objects with higher depth values will be drawn
on top of other Sprite values by the SpriteRenderSystem.

class sdl2.ext.SoftwareSprite(imgsurface : sdl2.SDL_Surface, free : boolean)
A simple, visible, pixel-based 2D object, implemented on top of SDL2 software surfaces. free indicates, whether
imgsurface shall be automatically freed on deleting the SoftwareSprite.

free
Indicates, if the bound surface shall be freed on deleting the SoftwareSprite.

surface
The sdl2.SDL_Surface containing the pixel data.

size
The size of the SoftwareSprite as tuple.

subsprite(area : (int, int, int, int))→ SoftwareSprite
Creates another SoftwareSprite from a part of the SoftwareSprite. The two sprites share pixel
data, so if the parent sprite’s surface is not managed by the sprite (free is False), you will need to keep it
alive while the subsprite exists.

class sdl2.ext.TextureSprite(texture : sdl2.SDL_Texture[, free=True])
A simple, visible, pixel-based 2D object, implemented on top of SDL2 textures. free indicates, whether texture
shall be automatically freed on deleting the TextureSprite.

free
Indicates, if the bound texture shall be freed on deleting the TextureSprite.

angle
The rotation angle for the TextureSprite.
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center
The center to use for rotating the TextureSprite. None will reset the center to the default center of
the TextureSprite.

flip
Allows the TextureSprite to be flipped over its horizontal or vertical axis via the appropriate
SDL_FLIP_* value.

size
The size of the TextureSprite as tuple.

texture
The sdl2.SDL_Texture containing the texture data.

class sdl2.ext.SpriteRenderSystem
A rendering system for Sprite components. This is a base class for rendering systems capable of drawing and
displaying Sprite based objects. Inheriting classes need to implement the rendering capability by overriding
the render() method.

sortfunc
Sort function for the component processing order. The default sort order is based on the depth attribute of
every sprite. Lower depth values will cause sprites to be drawn below sprites with higher depth values. If
sortfunc shall be overridden, it must match the callback requirements for sorted().

process(world : World, components : iterable)→ None
Renders the passed Sprite objects via the render() method. The Sprite objects are sorted via
sortfunc before they are passed to render().

render(sprite : iterable)→ None
Renders the Sprite objects.

Note: This is a no-op function and needs to be implemented by inheriting classes.

class sdl2.ext.SoftwareSpriteRenderSystem(window : object)
A rendering system for SoftwareSprite components. The SoftwareSpriteRenderSystem class
uses a sdl2.SDL_Window as drawing device to display SoftwareSprite surfaces. It uses the internal
SDL surface of the window as drawing context, so that GL operations, such as texture handling or the usage of
SDL renderers is not possible.

window can be either a sdl2.ext.Window or sdl2.SDL_Window instance.

window
The sdl2.SDL_Window that is used as drawing device.

surface
The sdl2.SDL_Surface that acts as drawing context for window .

render(sprites : object[, x=None[, y=None]])→ None
Draws the passed sprites on the sdl2.ext.Window surface. x and y are optional arguments that can be
used as relative drawing location for sprites. If set to None, the location information of the sprites are used.
If set and sprites is an iterable, such as a list of SoftwareSprite objects, x and y are relative location
values that will be added to each individual sprite’s position. If sprites is a single SoftwareSprite, x
and y denote the absolute position of the SoftwareSprite, if set.

class sdl2.ext.TextureSpriteRenderSystem(target : object)
A rendering system for TextureSprite components. The TextureSpriteRenderSystem class uses a
sdl2.SDL_Renderer as drawing device to display Sprite surfaces.
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target can be a sdl2.ext.Window , sdl2.SDL_Window, a:class:sdl2.ext.Renderer or a sdl2.
SDL_Renderer. If it is a sdl2.ext.Window or sdl2.SDL_Window instance, it will try to create a
sdl2.SDL_Renderer with hardware acceleration for it.

sdlrenderer
The sdl2.SDL_Renderer that is used as drawing context.

rendertarget
The target for which the sdlrenderer was created, if any.

render(sprites : object[, x=None[, y=None]])→ None
Renders the passed sprites via the renderer. x and y are optional arguments that can be used as relative
drawing location for sprites. If set to None, the location information of the sprites are used. If set and
sprites is an iterable, such as a list of TextureSprite objects, x and y are relative location values that
will be added to each individual sprite’s position. If sprites is a single TextureSprite, x and y denote
the absolute position of the TextureSprite, if set.

class sdl2.ext.SpriteFactory(sprite_type=TEXTURE, **kwargs)
A factory class for creating Sprite objects. The SpriteFactory can create TextureSprite or
SoftwareSprite instances, depending on the sprite_type being passed to it, which can be SOFTWARE or
TEXTURE. The additional kwargs are used as default arguments for creating sprites within the factory methods.

sprite_type
The sprite type created by the factory. This will be either SOFTWARE for SoftwareSprite or
TEXTURE for TextureSprite objects.

default_args
The default arguments to use for creating new sprites.

create_software_sprite(size, bpp=32, masks=None)→ SoftwareSprite
Creates a software sprite. A size tuple containing the width and height of the sprite and a bpp value,
indicating the bits per pixel to be used, need to be provided.

create_sprite(**kwargs)→ Sprite
Creates a Sprite. Depending on the sprite_type, this will return a SoftwareSprite or
TextureSprite.

kwargs are the arguments to be passed for the sprite construction and can vary depending
on the sprite type. Usually they have to follow the create_software_sprite() and
create_texture_sprite() method signatures. kwargs however will be mixed with the set
default_args so that one does not necessarily have to provide all arguments, if they are set within the
default_args. If kwargs and default_args contain the same keys, the key-value pair of kwargs is
chosen.

create_sprite_render_system(*args, **kwargs)→ SpriteRenderSystem
Creates a new SpriteRenderSystem, based on the set sprite_type. If sprite_type
is TEXTURE, a TextureSpriteRenderSystem is created with the the renderer from the
default_args. Other keyword arguments are ignored in that case.

Otherwise a SoftwareSpriteRenderSystem is created and args and kwargs are passed to it.

create_texture_sprite(renderer : object, size, pformat=sdl2.SDL_PIXELFORMAT_RGBA8888,
access=sdl2.SDL_TEXTUREACCESS_STATIC)→ TextureSprite

Creates a texture sprite. A size tuple containing the width and height of the sprite needs to be provided.

TextureSprite objects are assumed to be static by default, making it impossible to access their pixel
buffer in favour for faster copy operations. If you need to update the pixel data frequently or want to use the
texture as target for rendering operations, access can be set to the relevant SDL_TEXTUREACCESS_*
flag.
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from_color(color : object, size, bpp=32, masks=None)→ Sprite
Creates a Sprite with a certain color.

from_image(fname : str)→ Sprite
Creates a Sprite from an image file. The image must be loadable via sdl2.ext.load_image().

from_object(obj: object)→ Sprite
Creates a Sprite from an object. The object will be passed through sdl2.rwops_from_object()
in order to try to load image data from it.

from_surface(surface : SDL_Surface[, free=False])→ Sprite
Creates a Sprite from the passed sdl2.SDL_Surface. If free is set to True, the passed surface will
be freed automatically.

from_text(text : str[, **kwargs])→ Sprite
Creates a Sprite from a string of text. This method requires a sdl2.ext.FontManager to be in
kwargs or default_args.

class sdl2.ext.Renderer(target : obj[, logical_size=None[, index=-1[,
flags=sdl2.SDL_RENDERER_ACCELERATED]])

A rendering context for windows and sprites that can use hardware or software-accelerated graphics drivers.

If target is a sdl2.ext.Window or sdl2.SDL_Window, index and flags are passed to the relevant sdl2.
SDL_CreateRenderer() call. If target is a SoftwareSprite or sdl2.SDL_Surface, the index and
flags arguments are ignored.

sdlrenderer
The underlying sdl2.SDL_Renderer.

rendertarget
The target for which the Renderer was created.

logical_size
The logical size of the renderer.

Setting this allows you to draw as if your renderer had this size, even though the target may be larger or
smaller. When drawing, the renderer will automatically scale your contents to the target, creating letter-
boxing or sidebars if necessary.

To reset your logical size back to the target’s, set it to (0, 0).

Setting this to a lower value may be useful for low-resolution effects.

Setting this to a larger value may be useful for antialiasing.

color
The sdl2.ext.Color to use for draw and fill operations.

blendmode
The blend mode used for drawing operations (fill and line). This can be a value of

• SDL_BLENDMODE_NONE for no blending

• SDL_BLENDMODE_BLEND for alpha blending

• SDL_BLENDMODE_ADD for additive color blending

• SDL_BLENDMODE_MOD for multiplied color blending

scale
The horizontal and vertical drawing scale as two-value tuple.

clear([color=None])
Clears the rendering context with the currently set or passed color.
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copy(src : obj[, srcrect=None[, dstrect=None[, angle=0[, center=None[,
flip=render.SDL_FLIP_NONE ]]]]])→ None

Copies (blits) the passed src, which can be a TextureSprite or sdl2.SDL_Texture, to the target
of the Renderer. srcrect is the source rectangle to be used for clipping portions of src. dstrect is the
destination rectangle. angle will cause the texture to be rotated around center by the given degrees. flip
can be one of the SDL_FLIP_* constants and will flip the texture over its horizontal or vertical middle
axis. If src is a TextureSprite, angle, center and flip will be set from src’s attributes, if not provided.

draw_line(points : iterable[, color=None])→ None
Draws one or multiple lines on the rendering context. If line consists of four values (x1, y1, x2,
y2) only, a single line is drawn. If line contains more than four values, a series of connected lines is
drawn.

draw_point(points : iterable[, color=None])→ None
Draws one or multiple points on the rendering context. The points argument contains the x and y values
of the points as simple sequence in the form (point1_x, point1_y, point2_x, point2_y,
...).

draw_rect(rects : iterable[, color=None])→ None
Draws one or multiple rectangles on the rendering context. rects contains sequences of four values denoting
the x and y offset and width and height of each individual rectangle in the form ((x1, y1, w1, h1),
(x2, y2, w2, h2), ...).

fill(rects : iterable[, color=None])→ None
Fills one or multiple rectangular areas on the rendering context with the current set or passed color. rects
contains sequences of four values denoting the x and y offset and width and height of each individual
rectangle in the form ((x1, y1, w1, h1), (x2, y2, w2, h2), ...).

present()→ None
Refreshes the rendering context, causing changes to the render buffers to be shown.

Software Surface manipulation

sdl2.ext.subsurface(surface : SDL_Surface, area : (int, int, int, int))→ SDL_Surface
Creates a surface from a part of another surface. The two surfaces share pixel data.

Note: The newly created surface must not be used after its parent has been freed!

Window routines to manage on-screen windows

class sdl2.ext.Window(title : string, size : iterable[, position=None[, flags=None]])
The Window class represents a visible on-screen object with an optional border and title text. It represents an
area on the screen that can be accessed by the application for displaying graphics and receive and process user
input.

The position to show the Window at is undefined by default, letting the operating system or window manager
pick the best location. The behaviour can be adjusted through the DEFAULTPOS class variable.

Window.DEFAULTPOS = (10, 10)

The created Window is hidden by default, which can be overridden at the time of creation by providing other
SDL window flags through the flags parameter. The default flags for creating Window instances can be adjusted
through the DEFAULTFLAGS class variable.
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Window.DEFAULTFLAGS = sdl2.SDL_WINDOW_SHOWN

window
The used sdl2.SDL_Window.

title
The title of the Window .

size
The size of the Window .

position
The current position of the Window top-left corner.

create()→ None
Creates the underlying SDL2 window. This method does nothing, if the window was already created.

open()→ None
Creates and shows the window.

close()→ None
Closes the window, implicitly destroying the underlying SDL2 window.

show()→ None
Show the Window on the display.

hide()→ None
Hide the Window .

maximize()→ None
Maximizes the Window to the display’s dimensions.

minimize()→ None
Minimizes the Window to an iconified state in the system tray.

refresh()→ None
Refreshes the entire Window surface.

Note: This only needs to be called, if a SDL_Surface was acquired via get_surface() and is used to
display contents.

get_surface()→ SDL_Surface
Gets the sdl2.SDL_Surface used by the Window to display 2D pixel data.

Note: Using this method will make the usage of GL operations, such as texture handling or the usage of
SDL renderers impossible.

1.5 PySDL2 FAQ

This is a list of Frequently Asked Questions about PySDL2. If you think, something is missing, please suggest it!

1.5.1 On importing. . .

. . . my script fails and complains that a SDL2 library could not be found!
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Do you have the libraries properly installed? If on macOS or Windows, try running pip install
pysdl2-dll and opening a fresh terminal to fix the problem. If on Linux or similar, did you follow the
operating system’s way of installing or registering libraries? If you placed the libraries in some folder,
make sure that the PYSDL2_DLL_PATH environment variable points to the correct location.

. . . my script fails complaining that the found SDL2 library can’t be used!

Do you use a 64-bit operating system? Please make sure, that the Python interpreter and that the SDL2
libraries are either 64-bit ones or 32-bit ones. A 32-bit Python interpreter can’t deal with a 64-bit library
and vice versa.

1.5.2 Using. . .

. . . the sdl2 API is weird. Why do you use the SDL_ prefix all the time?

The low-level APIs for SDL2, SDL2_mixer, SDL2_ttf, . . . shall represent a clean wrapping around the
original C API calls. Thus, if you have to search for documentation or want to make a Python to C
conversion (or C to Python), most of the code cleanly maps to the original API naming and layout and
you do not have to think about whether you had to use SDL_ or TTF_ or whatever as prefix or suffix.

. . . the sdl2 API is does not comply to PEP-8. Please make it PEP-8 compatible.

Most of the API is PEP-8 compatible. The low-level bindings to SDL2 and related libraries however use
the exact naming (including capital letters) as the functions or structures, they map to. See the previous
entry for the reason of that.

1.5.3 How do I. . .

. . . save my surfaces as image files?

You can use sdl2.SDL_SaveBMP() to save them as bitmap files. Other formats are currently unsup-
ported, but might be added to the sdl2.ext package in the future.

1.5.4 Font handling. . .

. . . is too hard. Why can’t it work the same way as pygame does?

The sdl2.sdlttf API does not know about platform-specific font locations and is unable to resolve
font paths based on e.g. the font name or typeface. It’s not its job and PySDL2 likewise does not pro-
vide such functionality. If you need improved font detection support, you might want to take a look
at the sysfont module of the python-utils project, which can be found at https://bitbucket.org/marcusva/
python-utils/. That said, it’s usually a bad idea for a projects to rely on system fonts that may not be
available on every computer: finding a free-use font you like and bundling it with your code is much
safer.

1.6 Release News

This describes the latest changes between the PySDL2 releases.
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1.6.1 0.9.7

Released on 2020-02-15.

• The minimum required SDL version is 2.0.5

• The minimum required SDL_ttf version is 2.0.14

• The minimum required SDL_mixer version is 2.0.1

• The minimum required SDL_image version is 2.0.1

• Improved compatibility with older SDL2 releases by raising informative exceptions whenever a function requir-
ing a newer SDL2 binary is called

• added support for loading SDL2 .framework binaries on macOS

• added built-in support for pip installation of SDL2 binaries on macOS and Windows using pysdl2-dll

• fixed issue #75: sdl2.SDL_JoystickGetGUIDString() and sdl2.
SDL_GameControllerMappingForGUID() no longer cause a segfault on Python < 3.8

• fixed bug preventing use of background color with wrapped text using sdl2.ext.FontManager.
render() (PR #134)

• fixed issue #112: allow easy moving and resizing of sdl2.ext.Window() objects through ‘position’ and
‘size’ attributes, added ‘open’ and ‘close’ methods to Window objects

• fixed issue #126: the write method for RW objects created with sdl2.rw_from_object() now returns the
correct value

• fixed issue #130: SDL_RW* functions now accept pointers to RW objects

• fixed issue #135: sdl2.SDL_GetPrefPath() and sdl2.SDL_GetPrefPath() now return bytestrings
instead of pointers to strings.

• fixed issue #136: sdl2.SysWMmsg now properly defined and accessable for syswm events.

• fixed issue #148: added support for loading SDL2 .so binaries with numeric suffixes on Unix-like OSes (e.g.
‘libSDL2.so.2’)

• fixed issue #152: restored compatibility with recent versions of PyPy

• fixed transparency issues with pallete indexed PNGs (PR #159)

• updated sdl2 to include the latest changes of SDL2 (release 2.0.10)

• updated sdl2.sdlttf to include the latest changes of SDL2_ttf (release 2.0.15)

• updated sdl2.sdlmixer to include the latest changes of SDL2_mixer (release 2.0.4)

• updated sdl2.sdlimage to include the latest changes of SDL2_image (release 2.0.5)

Big thanks to all the GitHub users who filed bug reports and submitted pull requests for this release.

1.6.2 0.9.6

Released on 2017-09-30.

• updated sdl2 to include the latest changes of SDL2 (release 2.0.6)

• fixed issue #98: wrap sdl2.SDL_GetHintBoolean() correctly

• fixed issue #99: wrap sdl2.sdlmixer.Mix_PausedMusic() correctly

• fixed issue #104: sdl2.ext.Resources.scan() shows the correct path on errors now

62 Chapter 1. Contents



PySDL2 Documentation, Release 0.9.7

• fixed issue #106: fix TextureSprite.__repr__() for an unset center property

• fixed some minor GC issues in sdl2.ext.sprite and sdl2.ext.font

• fixed the __getattr__ implementation for sdl2.ext.ebs.Entity

• fixed background colour handling for multiline text surfaces

1.6.3 0.9.5

Released on 2016-10-20.

• updated sdl2 to include the latest changes of SDL2 (release 2.0.5)

• fixed issue #94: added support for TrueType font collection (TTC) files

• fixed issue #80: added flip and rotation support for TextureSprite objects

• renamed sdl2.ext.Renderer.renderer attribute to sdl2.ext.Renderer.sdlrenderer. The
renderer attribute is deprecated and will be removed in a later version.

1.6.4 0.9.4

Released on 2016-07-07.

• updated sdl2 to include the latest changes of SDL2 (release 2.0.4)

• updated sdl2.sdlttf to include the latest changes of SDL_ttf (release 2.0.14)

• new sdl2.ext.Renderer.logical_size attribute to set or retrieve the logical pixel size of a renderer

• fixed issue #48: be more noisy about DLL loading issues

• fixed issue #65: misleading documentation for sdl2.ext.Renderer.draw_line()

• fixed issue #67: Return a proper error code, when unittests running as subprocesses fail

• fixed issue #72: sdl2.video.SDL_GL_DrawableSize() not available on import

• fixed issue #76: define missing SDL_PRESSED and SDL_RELEASED constants

• fixed issue #82: examples/gui.py fails due to an attribute error

• fixed issue #83: fix compatibility with newer PIL versions in sdl2.ext.image.load_image()

• fixed issue #84: The setter of sdl2.ext.Renderer.scale works properly now

• fixed issue #85: fix environment-dependent unit tests

• fixed issue #87: fix incorrect MIX_INIT_* constants in sdl2.sdlmixer

• fixed issue #88: use PILs Image.tobytes() instead of the deprecated Image.tostring()

• fixed horizontical and vertical line drawing in sdl2.ext.line()

• fixed a bug in sdl2.ext.Renderer.draw_line() for odd numbers of points

• dropped IronPython support

1.6. Release News 63



PySDL2 Documentation, Release 0.9.7

1.6.5 0.9.3

Released on 2014-07-08.

• updated sdl2 to include the latest changes of SDL2 (HG)

• new sdl2.ext.Renderer.scale attribute, which denotes the horizontal and vertical drawing scale

• new sdl2.ext.point_on_line() function to test, if a point lies on a line segment

• PYSDL2_DLL_PATH can contain multiple paths separated by os.pathsep to search for the libraries now

• sdl2.ext.get_image_formats() only returns BMP image support now, if SDL2_image and PIL are
not found

• sdl2.ext.load_image() tries to use sdl2.SDL_LoadBMP() now, if SDL2_image and PIL are not
found

• fixed issue #55: sdl2.SDL_GameControllerAddMappingsFromFile() does not raise a TypeError
for Python 3.x anymore

• fixed issue #56: sdl2.ext.Renderer.draw_line() and sdl2.ext.Renderer.draw_point()
handle multiple lines (or points) as arguments properly now

• fixed issue #57: if SDL2_image is not installed and PIL is used, the loaded pixel buffer of the image file is not
referenced anymore after returning from sdl2.ext.load_image(), causing random segmentation faults

• fixed issue #58: raise a proper error, if sdl2.ext.FontManager.render() could not render a text sur-
face

• fixed issue #59: The sdl2.ext.TextureSpriteRenderSystem.sdlrenderer attribute is correctly
documented now

• fixed a local variable and module name collision in sdl2.ext.FontManager.render()

Thanks to Filip M. Nowak for the PYSDL2_DLL_PATH improvement.

1.6.6 0.9.2

Released on 2014-04-13.

• fixed issue #32: the line clipping algorithms do not run into precision errors anymore

• fixed issue #53 (again): sdl2.video.SDL_GL_ResetAttributes() is properly wrapped now to retain
backwards compatibility with previous SDL2 releases

• fixed issue #54: text input is correctly converted for the text entry component

• updated the example BMP files, which could not be loaded properly on some systems with SDL2_image and
PIL

1.6.7 0.9.1

Released on 2014-04-05.

• fixed issue #50: corrected the sdl2.ext.load_image() documentation

• fixed issue #52: sdl2.ext.Renderer.fill(), sdl2.ext.Renderer.draw_rect() and sdl2.
ext.Renderer.draw_point() convert sequences correctly now

• fixed issue #53: provide backwards compatibility for previous SDL2 releases by adding a wrapper func for
sdl2.cpuinfo.SDL_HasAVX()
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1.6.8 0.9.0

Released on 2014-03-23.

IMPORTANT: This release breaks backwards-compatibility. See the notes for the issues #36 and #39.

• updated sdl2 to include the latest changes of SDL2 (release 2.0.3)

• new sdl2.ext.subsurface() function to create subsurfaces from sdl2.SDL_Surface objects

• new sdl2.ext.SoftwareSprite.subsprite() method to create sdl2.ext.SoftwarSprite
objects sharing pixel data

• the unit test runner features a –logfile argument now to safe the unit test output to a file

• issues #36, #39: the different render classes of sdl2.ext.sprite were renamed

– the sdl2.ext.RenderContext class was renamed to sdl2.ext.Renderer to be consistent with
with SDL2’s naming scheme

– sdl2.ext.SpriteRenderer was renamed to sdl2.ext.SpriteRenderSystem

– sdl2.ext.SoftwareSpriteRenderer was renamed to sdl2.ext.
SoftwareSpriteRenderSystem

– sdl2.ext.TextureSpriteRenderer was renamed to sdl2.ext.
TextureSpriteRenderSystem

– sdl2.ext.SpriteFactory.create_sprite_renderer() was renamed to sdl2.ext.
SpriteFactory.create_sprite_render_system()

• fixed sdl2.audio.SDL_LoadWAV() macro to provide the correct arguments

• fixed issue #44: use a slightly less confusing ValueError, if a renderer argument for the sdl2.ext.
SpriteFactory is not provided

• fixed issue #43: improved the code reference for the improved bouncing section in the docs

• fixed issue #40: typo in a RuntimeWarning message on loading the SDL2 libraries

• fixed issue #38: the points arguments of sdl2.ext.Renderer.draw_points() are properly docu-
mented now

• fixed issue #37: sdl2.SDL_GetRendererOutputSize() is now acccessible via a wildcard import

• fixed issue #35: download location is now mentioned in the docs

• fixed issue #12: remove confusing try/except on import in the examples

1.6.9 0.8.0

Released on 2013-12-30.

• updated PD information to include the CC0 dedication, since giving software away is not enough anymore

• updated sdl2 to include the latest changes of SDL2 (HG)

• fixed a wrong C mapping of sdl2.rwops.SDL_FreeRW()

• fixed various issues within the sdl2.ext.BitmapFont class

• issue #26: sdl2.SDL_AudioSpec.callback is a SDL_AudioCallBack() now

• issue #30: the SDL_Add/DelHintCallback() unittest works with PyPy now

• issue #31: sdl2.sdlmixer.SDL_MIXER_VERSION() returns the proper version now
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Thanks to Sven Eckelmann, Marcel Rodrigues, Michael McCandless, Andreas Schiefer and Franz Schrober for pro-
viding fixes and improvements.

1.6.10 0.7.0

Released on 2013-10-27.

• updated sdl2 to include the latest changes of SDL2 (release 2.0.1)

• fixed a bug in sdl2.ext.FontManager.render(), which did not apply the text color correctly

• issue #14: improved the error messages on failing DLL imports

• issue #19: the sdl2.ext.TextureSpriteRenderer.render() and sdl2.ext.
SoftwareSpriteRenderer.render() methods do not misinterpret x and y arguments anymore,
if set to 0

• issue #21: sdl2.ext.load_image() raises a proper UnsupportedError, if neither SDL_image nor
PIL are usable

Thanks to Marcel Rodrigues, Roger Flores and otus for providing fixes and improvement ideas.

1.6.11 0.6.0

Released on 2013-09-01.

• new sdl2.ext.FontManager.size attribute, which gives a default size to be used for adding fonts or
rendering text

• updated sdl2 to include the latest changes of SDL2

• sdl2.ext.RenderContext.copy() accepts any 4-value sequence as source or destination rectangle now

• issue #11: throw an ImportError instead of a RuntimeError, if a third-party DLL could not be imported
properly

• fixed a bug in the installation code, which caused sdl2.examples not to install the required resources

Thanks to Steven Johnson for his enhancements to the FontManager class. Thanks to Marcel Rodrigues for the
improvements to RenderContext.copy().

1.6.12 0.5.0

Released on 2013-08-14.

• new sdl2.ext.FontManager class, which provides simple TTF font rendering.

• new sdl2.ext.SpriteFactory.from_text() method, which creates text sprites

• put the SDL2 dll path at the beginning of PATH, if a PYSDL2_DLL_PATH is provided to avoid loading issues
for third party DLLs on Win32 platforms

• minor documentation fixes

Thanks to Dan Gillett for providing the FontManager and from_text() enhancements and his patience regarding all the
small change requests. Thanks to Mihail Latyshov for providing fixes to the documentation.
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1.6.13 0.4.1

Released on 2013-07-26.

• updated sdl2 to include the latest changes of SDL2

• improved DLL detection for DLLs not being in a library path

• fixed a bug in sdl2.ext.RenderContext.draw_rect() for drawing a single rect

• fixed a bug in the repr() call for sdl2.ext.SoftwareSprite

• issue #4: fixed a bug in sdl2.ext.RenderContext.fill() for filling a single rect

• issue #5: fixed pip installation support

• issue #6: fixed a bug in sdl2.ext.get_events(), which did not handle more than 10 events in the queue
correctly

• issue #8: sdl2.ext.SpriteFactory.create_texture_sprite() can create sprites to be used as
rendering targets now

• issue #9: improved error messages on trying to bind non-existent library functions via ctypes

• minor documentation fixes

Thanks to Steven Johnson, Todd Rovito, Bil Bas and Dan McCombs for providing fixes and improvements.

1.6.14 0.4.0

Released on 2013-06-08.

• new sdl2.sdlmixer module, which provides access to the SDL2_mixer library

• issue #1: fixed libc loading for cases where libc.so is a ld script

• updated sdl2 and sdl2.sdlimage to include the latest changes of the libraries, they wrap

1.6.15 0.3.0

Released on 2013-05-07.

• new sdl2.sdlgfx module, which provides access to the SDL2_gfx library

• new sdl2.ext.UIFactory.from_color method; it creates UI-supportive sprites from a color

• fixed color argument bugs in sdl2.ext.RenderContext methods

• fixed a module namespace issues in sdl2.ext.pixelaccess

• sdl2.ext.SpriteFactory methods do not use a default size argument anymore; it has to provided by
the caller

1.6.16 0.2.0

Released on 2013-05-03.

• removed sdl2.ext.scene; it now lives in python-utils

• fixed sdl2.haptic module usage for Python 3

• fixed sdl2.SDL_WindowGetData() and sdl2.SDL_WindowSetData() wrappers
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• fixed sdl2.ext.RenderContext.copy()

• fixed sdl2.ext.font module usage for Python 3

• fixed sdl2.ext.line()

• sdl2 imports all submodules now

• improved documentation

1.6.17 0.1.0

Released on 2013-04-23.

• Initial Release

Further readings:

1.7 Todo list for PySDL2

1.7.1 General

• more unit tests

1.7.2 Windows

• Add support for SDL_SetWindowsMessageHook()

1.8 License

This software is distributed under the Public Domain. Since it is
not enough anymore to tell people: 'hey, just do with it whatever
you like to do', you can consider this software being distributed
under the CC0 Public Domain Dedication
(http://creativecommons.org/publicdomain/zero/1.0/legalcode.txt).

In cases, where the law prohibits the recognition of Public Domain
software, this software can be licensed under the zlib license as
stated below:

Copyright (C) 2012-2020 Marcus von Appen <marcus@sysfault.org>

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software

(continues on next page)
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(continued from previous page)

in a product, an acknowledgement in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Some files are not covered by the license above.

• For examples/resources/tuffy.ttf, examples/resources/tuffy.copy.ttf and sdl2/
test/resources/tuffy.ttf the following terms apply:

We, the copyright holders of this work, hereby release it into the
public domain. This applies worldwide.

In case this is not legally possible,

We grant any entity the right to use this work for any purpose, without
any conditions, unless such conditions are required by law.

Thatcher Ulrich <tu@tulrich.com> http://tulrich.com
Karoly Barta bartakarcsi@gmail.com
Michael Evans http://www.evertype.com

• doc/python.inv

An inventory index for linking to the proper places in the Python documentation, taken from http://docs.python.
org/2/. Its copyright and license information can be found at http://docs.python.org/2/copyright.html and http:
//docs.python.org/2/license.html.
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CHAPTER 2

Indices and tables

• genindex

• modindex

• search
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CHAPTER 3

Documentation TODOs

Todo: More details, examples, etc.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pysdl2/checkouts/rel_0_9_7/doc/tutorial/pygamers.rst,
line 11.)

Last generated on: Jan 11, 2022
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Symbols
__add__() (sdl2.ext.Color method), 33
__call__() (sdl2.ext.EventHandler method), 44
__call__() (sdl2.ext.MPEventHandler method), 44
__div__() (sdl2.ext.Color method), 33
__mod__() (sdl2.ext.Color method), 33
__mul__() (sdl2.ext.Color method), 33
__sub__() (sdl2.ext.Color method), 33
__truediv__() (sdl2.ext.Color method), 33

A
a (sdl2.ext.Color attribute), 32
activate() (sdl2.ext.UIProcessor method), 49
add() (sdl2.ext.EventHandler method), 44
add() (sdl2.ext.FontManager method), 46
add() (sdl2.ext.Resources method), 53
add_archive() (sdl2.ext.Resources method), 53
add_file() (sdl2.ext.Resources method), 53
add_system() (sdl2.ext.World method), 43
ALL_PIXELFORMATS (in module sdl2), 26
angle (sdl2.ext.TextureSprite attribute), 55
Applicator (class in sdl2.ext), 42
Applicator.process() (in module sdl2.ext), 42
area (sdl2.ext.Sprite attribute), 55
ARGB() (in module sdl2.ext), 33
argb_to_color() (in module sdl2.ext), 33
AUDIO_FORMATS (in module sdl2), 26

B
b (sdl2.ext.Color attribute), 32
bg_color (sdl2.ext.FontManager attribute), 45
BitmapFont (class in sdl2.ext), 45
blendmode (sdl2.ext.Renderer attribute), 58
byteify() (in module sdl2.ext.compat), 35
bytesize (sdl2.ext.CTypesView attribute), 31

C
callable() (in module sdl2.ext.compat), 35
callbacks (sdl2.ext.EventHandler attribute), 44

can_render() (sdl2.ext.BitmapFont method), 45
center (sdl2.ext.TextureSprite attribute), 55
clear() (sdl2.ext.Renderer method), 58
clipline() (in module sdl2.ext), 28
close() (sdl2.ext.FontManager method), 46
close() (sdl2.ext.Window method), 60
cmy (sdl2.ext.Color attribute), 32
cohensutherland() (in module sdl2.ext), 28
Color (class in sdl2.ext), 32
color (sdl2.ext.FontManager attribute), 45
color (sdl2.ext.Renderer attribute), 58
COLOR() (in module sdl2.ext), 33
componenttypes (sdl2.ext.Applicator attribute), 42
componenttypes (sdl2.ext.System attribute), 42
contains() (sdl2.ext.BitmapFont method), 45
convert_to_color() (in module sdl2.ext), 33
copy() (sdl2.ext.Renderer method), 58
create() (sdl2.ext.Window method), 60
create_array() (in module sdl2.ext), 32
create_button() (sdl2.ext.UIFactory method), 48
create_check_button() (sdl2.ext.UIFactory

method), 48
create_software_sprite()

(sdl2.ext.SpriteFactory method), 57
create_sprite() (sdl2.ext.SpriteFactory method),

57
create_sprite_render_system()

(sdl2.ext.SpriteFactory method), 57
create_text_entry() (sdl2.ext.UIFactory

method), 48
create_texture_sprite()

(sdl2.ext.SpriteFactory method), 57
createfunc (sdl2.ext.particles.ParticleEngine at-

tribute), 50
CTypesView (class in sdl2.ext), 31

D
deactivate() (sdl2.ext.UIProcessor method), 49
default_args (sdl2.ext.SpriteFactory attribute), 57
default_args (sdl2.ext.UIFactory attribute), 48
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default_font (sdl2.ext.FontManager attribute), 45
delete() (sdl2.ext.Entity method), 42
delete() (sdl2.ext.World method), 43
delete_entities() (sdl2.ext.World method), 43
deletefunc (sdl2.ext.particles.ParticleEngine at-

tribute), 50
deprecated() (in module sdl2.ext.compat), 36
deprecation() (in module sdl2.ext.compat), 36
depth (sdl2.ext.Sprite attribute), 55
dispatch() (sdl2.ext.UIProcessor method), 49
draw_line() (sdl2.ext.Renderer method), 59
draw_point() (sdl2.ext.Renderer method), 59
draw_rect() (sdl2.ext.Renderer method), 59

E
Entity (class in sdl2.ext), 41
environment variable

PYSDL2_DLL_PATH, 5
EventHandler (class in sdl2.ext), 44
experimental() (in module sdl2.ext.compat), 36
ExperimentalWarning, 36

F
fill() (in module sdl2.ext), 36
fill() (sdl2.ext.Renderer method), 59
flip (sdl2.ext.TextureSprite attribute), 56
FontManager (class in sdl2.ext), 45
free (sdl2.ext.SoftwareSprite attribute), 55
free (sdl2.ext.TextureSprite attribute), 55
from_color() (sdl2.ext.SpriteFactory method), 57
from_color() (sdl2.ext.UIFactory method), 48
from_image() (sdl2.ext.SpriteFactory method), 58
from_image() (sdl2.ext.UIFactory method), 49
from_object() (sdl2.ext.SpriteFactory method), 58
from_object() (sdl2.ext.UIFactory method), 49
from_surface() (sdl2.ext.SpriteFactory method), 58
from_surface() (sdl2.ext.UIFactory method), 49
from_text() (sdl2.ext.SpriteFactory method), 58

G
g (sdl2.ext.Color attribute), 32
get() (sdl2.ext.Resources method), 53
get_entities() (sdl2.ext.World method), 43
get_events() (in module sdl2.ext), 35
get_filelike() (sdl2.ext.Resources method), 54
get_image_formats() (in module sdl2.ext), 50
get_path() (sdl2.ext.Resources method), 54
get_surface() (sdl2.ext.Window method), 60

H
handlers (sdl2.ext.UIProcessor attribute), 49
hide() (sdl2.ext.Window method), 60
hsla (sdl2.ext.Color attribute), 33
hsva (sdl2.ext.Color attribute), 33

I
i1i2i3 (sdl2.ext.Color attribute), 33
id (sdl2.ext.Entity attribute), 42
init() (in module sdl2.ext), 35
insert_system() (sdl2.ext.World method), 43
is_applicator (sdl2.ext.Applicator attribute), 42
is_rgb_color() (in module sdl2.ext), 33
is_rgba_color() (in module sdl2.ext), 34
is_shared (sdl2.ext.CTypesView attribute), 31
isiterable() (in module sdl2.ext.compat), 36
ISPYTHON2 (in module sdl2.ext.compat), 35
ISPYTHON3 (in module sdl2.ext.compat), 35
itemsize (sdl2.ext.MemoryView attribute), 32

L
liangbarsky() (in module sdl2.ext), 28
life (sdl2.ext.particles.Particle attribute), 51
line() (in module sdl2.ext), 36
load_image() (in module sdl2.ext), 50
logical_size (sdl2.ext.Renderer attribute), 58
long() (in module sdl2.ext.compat), 35

M
mapping (sdl2.ext.BitmapFont attribute), 45
maximize() (sdl2.ext.Window method), 60
MemoryView (class in sdl2.ext), 31
minimize() (sdl2.ext.Window method), 60
mousedown() (sdl2.ext.UIProcessor method), 49
mousemotion() (sdl2.ext.UIProcessor method), 49
mouseup() (sdl2.ext.UIProcessor method), 49
MPEventHandler (class in sdl2.ext), 44

N
ndim (sdl2.ext.MemoryView attribute), 32
normalize() (sdl2.ext.Color method), 33

O
object (sdl2.ext.CTypesView attribute), 31
offsets (sdl2.ext.BitmapFont attribute), 45
open() (sdl2.ext.Window method), 60
open_tarfile() (in module sdl2.ext), 54
open_url() (in module sdl2.ext), 54
open_zipfile() (in module sdl2.ext), 54

P
Particle (class in sdl2.ext.particles), 51
ParticleEngine (class in sdl2.ext.particles), 50
passevent() (sdl2.ext.UIProcessor method), 49
pixels2d() (in module sdl2.ext), 51
pixels3d() (in module sdl2.ext), 52
PixelView (class in sdl2.ext), 51
platform_is_64bit() (in module sdl2.ext.compat),
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point_on_line() (in module sdl2.ext), 28
position (sdl2.ext.particles.Particle attribute), 51
position (sdl2.ext.Sprite attribute), 55
position (sdl2.ext.Window attribute), 60
prepare_color() (in module sdl2.ext), 36
present() (sdl2.ext.Renderer method), 59
process() (sdl2.ext.particles.ParticleEngine method),

50
process() (sdl2.ext.SpriteRenderSystem method), 56
process() (sdl2.ext.System method), 42
process() (sdl2.ext.UIProcessor method), 50
process() (sdl2.ext.World method), 43
PYSDL2_DLL_PATH, 5

Q
quit() (in module sdl2.ext), 35

R
r (sdl2.ext.Color attribute), 32
refresh() (sdl2.ext.Window method), 60
remove() (sdl2.ext.EventHandler method), 44
remove_system() (sdl2.ext.World method), 43
render() (sdl2.ext.BitmapFont method), 45
render() (sdl2.ext.FontManager method), 46
render() (sdl2.ext.SoftwareSpriteRenderSystem

method), 56
render() (sdl2.ext.SpriteRenderSystem method), 56
render() (sdl2.ext.TextureSpriteRenderSystem

method), 57
render_on() (sdl2.ext.BitmapFont method), 45
Renderer (class in sdl2.ext), 58
rendertarget (sdl2.ext.Renderer attribute), 58
rendertarget (sdl2.ext.TextureSpriteRenderSystem

attribute), 57
Resources (class in sdl2.ext), 53
RGBA() (in module sdl2.ext), 33
rgba_to_color() (in module sdl2.ext), 33
run() (sdl2.ext.TestEventProcessor method), 35

S
scale (sdl2.ext.Renderer attribute), 58
scan() (sdl2.ext.Resources method), 54
sdl2 (module), 24
sdl2.ext (module), 28
sdl2.ext.colorpalettes (module), 34
sdl2.ext.compat (module), 35
sdl2.ext.particles (module), 50
sdl2.rw_from_object() (in module sdl2), 26
sdl2.sdlgfx (module), 27
sdl2.sdlimage (module), 27
sdl2.sdlmixer (module), 27
sdl2.sdlttf (module), 28
SDLError, 34
sdlrenderer (sdl2.ext.Renderer attribute), 58

sdlrenderer (sdl2.ext.TextureSpriteRenderSystem at-
tribute), 57

sender (sdl2.ext.EventHandler attribute), 44
show() (sdl2.ext.Window method), 60
size (sdl2.ext.BitmapFont attribute), 45
size (sdl2.ext.FontManager attribute), 46
size (sdl2.ext.MemoryView attribute), 32
size (sdl2.ext.SoftwareSprite attribute), 55
size (sdl2.ext.Sprite attribute), 55
size (sdl2.ext.TextureSprite attribute), 56
size (sdl2.ext.Window attribute), 60
SOFTWARE (in module sdl2.ext), 55
SoftwareSprite (class in sdl2.ext), 55
SoftwareSpriteRenderSystem (class in sdl2.ext),

56
sortfunc (sdl2.ext.SpriteRenderSystem attribute), 56
source (sdl2.ext.MemoryView attribute), 32
Sprite (class in sdl2.ext), 55
sprite_type (sdl2.ext.SpriteFactory attribute), 57
SpriteFactory (class in sdl2.ext), 57
spritefactory (sdl2.ext.UIFactory attribute), 48
SpriteRenderSystem (class in sdl2.ext), 56
strides (sdl2.ext.MemoryView attribute), 32
string_to_color() (in module sdl2.ext), 34
stringify() (in module sdl2.ext.compat), 36
subsprite() (sdl2.ext.SoftwareSprite method), 55
subsurface() (in module sdl2.ext), 59
surface (sdl2.ext.BitmapFont attribute), 45
surface (sdl2.ext.SoftwareSprite attribute), 55
surface (sdl2.ext.SoftwareSpriteRenderSystem at-

tribute), 56
System (class in sdl2.ext), 42
systems (sdl2.ext.World attribute), 43

T
TestEventProcessor (class in sdl2.ext), 35
TEXTURE (in module sdl2.ext), 55
texture (sdl2.ext.TextureSprite attribute), 56
TextureSprite (class in sdl2.ext), 55
TextureSpriteRenderSystem (class in sdl2.ext),

56
title (sdl2.ext.Window attribute), 60
to_bytes() (sdl2.ext.CTypesView method), 31
to_ctypes() (in module sdl2.ext), 32
to_list() (in module sdl2.ext), 32
to_tuple() (in module sdl2.ext), 32
to_uint16() (sdl2.ext.CTypesView method), 31
to_uint32() (sdl2.ext.CTypesView method), 31
to_uint64() (sdl2.ext.CTypesView method), 31

U
UIFactory (class in sdl2.ext), 48
UIProcessor (class in sdl2.ext), 49
unichr() (in module sdl2.ext.compat), 35
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unicode() (in module sdl2.ext.compat), 35
UnsupportedError, 36
updatefunc (sdl2.ext.particles.ParticleEngine at-

tribute), 50

V
view (sdl2.ext.CTypesView attribute), 31

W
Window (class in sdl2.ext), 59
window (sdl2.ext.SoftwareSpriteRenderSystem at-

tribute), 56
window (sdl2.ext.Window attribute), 60
World (class in sdl2.ext), 42
world (sdl2.ext.Entity attribute), 42

X
x (sdl2.ext.particles.Particle attribute), 51
x (sdl2.ext.Sprite attribute), 55

Y
y (sdl2.ext.particles.Particle attribute), 51
y (sdl2.ext.Sprite attribute), 55
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